Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727363

RESUMO

Their unique physicochemical properties and multi-enzymatic activity make CeO2 nanoparticles (CeO2 NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO2 NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO2 NPs (CeO2:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals. Using an anion-exchange method, CeO2:Gd NPs (~5 nm) with various Gd-doping levels (10 mol.% or 20 mol.%) were synthesized. The radical-scavenging properties and biomimetic activities (namely SOD- and peroxidase-like activities) of CeO2:Gd NPs were assessed using a chemiluminescent method with selective chemical probes: luminol, lucigenin, and L-012 (a highly sensitive luminol analogue). In particular, gadolinium doping has been shown to enhance the radical-scavenging properties of CeO2 NPs. Unexpectedly, both bare CeO2 NPs and CeO2:Gd NPs did not exhibit SOD-like activity, acting as pro-oxidants and contributing to the generation of reactive oxygen species. Gadolinium doping caused an increase in the pro-oxidant properties of nanoscale CeO2. At the same time, CeO2:Gd NPs did not significantly inhibit the intrinsic activity of the natural enzyme superoxide dismutase, and CeO2:Gd NPs conjugated with SOD demonstrated SOD-like activity. In contrast to SOD-like properties, peroxidase-like activity was observed for both bare CeO2 NPs and CeO2:Gd NPs. This type of enzyme-like activity was found to be pH-dependent. In a neutral medium (pH = 7.4), nanoscale CeO2 acted as a prooxidant enzyme (peroxidase), while in an alkaline medium (pH = 8.6), it lost its catalytic properties; thus, it cannot be regarded as a nanozyme. Both gadolinium doping and conjugation with a natural enzyme were shown to modulate the interaction of CeO2 NPs with the key components of redox homeostasis.

2.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37833949

RESUMO

In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to evaluate the effect of different concentrations of nanoceria (from 10-2 to 10-6 M) on cells involved in the regeneration of skin cell structures such as fibroblasts, mesenchymal stem cells, and keratinocytes. Two different methods of nanoceria preparation were investigated: (1) CeO-NPs-1 by precipitation from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid and (2) CeO-NPs-2 by hydrolysis of ammonium hexanitratocerate (IV) under conditions of thermal autoclaving. According to the X-ray diffraction, transmission electron microscopy, and dynamic light scattering data, CeO2-1 consists of individual particles of cerium dioxide (3-5 nm) and their aggregates with diameters of 60-130 nm. CeO2-2 comprises small aggregates of 8-20 nm in diameter, which consist of particles of 2-3 nm in size. Cell cultures of human fibroblasts, human mesenchymal stem cells, and human keratinocytes were cocultured with different concentrations of nanoceria sols (10-2, 10-3, 10-4, 10-5, and 10-6 mol/L). The metabolic activity of all cell types was investigated by MTT test after 48 and 72 h, whereas proliferative activity and cytotoxicity were determined by quantitative cell culture counting and live/dead test. A dependence of biological effects on the method of nanoceria preparation and concentration was revealed. Data were obtained with respect to the optimal concentration of sol to achieve the highest metabolic effect in the used cell cultures. Hypotheses about the mechanisms of the obtained effects and the structure of a fundamentally new medical device for accelerated healing of skin wounds were formulated. The method of nanoceria synthesis and concentration fundamentally and significantly change the biological activity of cell cultures of different types-from suppression to pronounced stimulation. The best biological activity of cell cultures was determined through cocultivation with sols of citrate nanoceria (CeO-NPs-1) at a concentration of 10-3-10-4 M.


Assuntos
Cério , Nanopartículas , Humanos , Cério/farmacologia , Cério/química , Nanopartículas/química
3.
Biomedicines ; 11(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37893152

RESUMO

Cold argon plasma (CAP) and metal oxide nanoparticles are well known antimicrobial agents. In the current study, on an example of Escherichia coli, a series of analyses was performed to assess the antibacterial action of the combination of these agents and to evaluate the possibility of using cerium oxide and cerium fluoride nanoparticles for a combined treatment of bacterial diseases. The joint effect of the combination of cold argon plasma and several metal oxide and fluoride nanoparticles (CeO2, CeF3, WO3) was investigated on a model of E. coli colony growth on agar plates. The mutagenic effect of different CAP and nanoparticle combinations on bacterial DNA was investigated, by means of a blue-white colony assay and RAPD-PCR. The effect on cell wall damage, using atomic force microscopy, was also studied. The results obtained demonstrate that the combination of CAP and redox-active metal oxide nanoparticles (RAMON) effectively inhibits bacterial growth, providing a synergistic antimicrobial effect exceeding that of any of the agents alone. The combination of CAP and CeF3 was shown to be the most effective mutagen against plasmid DNA, and the combination of CAP and WO3 was the most effective against bacterial genomic DNA. The analysis of direct cell wall damage by atomic force microscopy showed the combination of CAP and CeF3 to be the most effective antimicrobial agent. The combination of CAP and redox-active metal oxide or metal fluoride nanoparticles has a strong synergistic antimicrobial effect on bacterial growth, resulting in plasmid and genomic DNA damage and cell wall damage. For the first time, a strong antimicrobial and DNA-damaging effect of CeF3 nanoparticles has been demonstrated.

4.
Cells ; 12(19)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37830630

RESUMO

Cerium oxide nanoparticles (CeO2 NPs) are metal-oxide-based nanozymes with unique reactive oxygen species (ROS) scavenging abilities. Here, we studied new CeO2 NPs modified with calcein (CeO2-calcein) as an intracellular ROS inactivation/visualization theranostic agent. The molecular mechanisms of the CeO2-calcein intracellular activity, allowing for the direct monitoring of ROS inactivation in living cells, were studied. CeO2-calcein was taken up by both normal (human mesenchymal stem cells, hMSc) and cancer (human osteosarcoma, MNNG/Hos cell line) cells, and was easily decomposed via endogenous or exogenous ROS, releasing brightly fluorescent calcein, which could be quantitatively detected using fluorescence microscopy. It was shown that the CeO2-calcein has selective cytotoxicity, inducing the death of human osteosarcoma cells and modulating the expression of key genes responsible for cell redox status as well as proliferative and migration activity. Such cerium-based theranostic agents can be used in various biomedical applications.


Assuntos
Neoplasias Ósseas , Cério , Nanopartículas Metálicas , Osteossarcoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cério/farmacologia , Osteossarcoma/tratamento farmacológico
5.
Polymers (Basel) ; 15(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37765694

RESUMO

Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving forward to the molecular imaging field and requires advanced imaging probes. This paper reports on a new design of MRI-visible LbL capsules, loaded with redox-active gadolinium-doped cerium oxide nanoparticles (CeGdO2-x NPs). CeGdO2-x NPs possess an ultrasmall size, high colloidal stability, and pronounced antioxidant properties. A comprehensive analysis of LbL capsules by TEM, SEM, LCSM, and EDX techniques was carried out. The research demonstrated a high level of biocompatibility and cellular uptake efficiency of CeGdO2-x-loaded capsules by cancer (human osteosarcoma and adenocarcinoma) cells and normal (human mesenchymal stem) cells. The LbL-based delivery platform can also be used for other imaging modalities and theranostic applications.

6.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570485

RESUMO

Proton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers. Laser-synthesized B NPs were efficiently absorbed by MNNG/Hos human osteosarcoma cells and did not demonstrate any remarkable toxicity effects up to concentrations of 100 ppm, as followed from the results of the MTT and clonogenic assay tests. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell death under irradiation by a 160.5 MeV proton beam. The irradiation of MNNG/Hos cells at a dose of 3 Gy in the presence of 80 and 100 ppm of B NPs led to a 2- and 2.7-fold decrease in the number of formed cell colonies compared to control samples irradiated in the absence of NPs. The obtained data unambiguously evidenced the effect of a strong proton therapy enhancement mediated by B NPs. We also found that the proton beam irradiation of B NPs leads to the generation of reactive oxygen species (ROS), which evidences a possible involvement of the non-nuclear mechanism of cancer cell death related to oxidative stress. Offering a series of advantages, including a passive targeting option and the possibility of additional theranostic functionalities based on the intrinsic properties of B NPs (e.g., photothermal therapy or neutron boron capture therapy), the proposed concept promises a major advancement in proton beam-based cancer treatment.

7.
Molecules ; 28(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770832

RESUMO

Recently, human mesenchymal stem cells (hMSc) have attracted a great deal of attention as potential therapeutic agents in the treatment of socially significant diseases. Despite substantial advances in stem-cell therapy, the biological mechanisms of hMSc action after transplantation remain unclear. The use of magnetic resonance imaging (MRI) as a non-invasive method for tracking stem cells in the body is very important for analysing their distribution in tissues and organs, as well as for ensuring control of their lifetime after injection. Herein, detailed experimental data are reported on the biocompatibility towards hMSc of heavily gadolinium-doped cerium oxide nanoparticles (Ce0.8Gd0.2O2-x) synthesised using two synthetic protocols. The relaxivity of the nanoparticles was measured in a magnetic field range from 1 mT to 16.4 T. The relaxivity values (r1 = 11 ± 1.2 mM-1 s-1 and r1 = 7 ± 1.2 mM-1 s-1 in magnetic fields typical of 1.5 and 3 T MRI scanners, respectively) are considerably higher than those of the commercial Omniscan MRI contrast agent. The low toxicity of gadolinium-doped ceria nanoparticles to hMSc enables their use as an effective theranostic tool with improved MRI-contrasting properties.


Assuntos
Gadolínio , Nanopartículas , Humanos , Nanopartículas/uso terapêutico , Células-Tronco , Meios de Contraste , Imageamento por Ressonância Magnética/métodos
8.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674757

RESUMO

Novel radioprotectors are strongly demanded due to their numerous applications in radiobiology and biomedicine, e.g., for facilitating the remedy after cancer radiotherapy. Currently, cerium-containing nanomaterials are regarded as promising inorganic radioprotectors due to their unrivaled antioxidant activity based on their ability to mimic the action of natural redox enzymes like catalase and superoxide dismutase and to neutralize reactive oxygen species (ROS), which are by far the main damaging factors of ionizing radiation. The freshwater planarian flatworms are considered a promising system for testing new radioprotectors, due to the high regenerative potential of these species and an excessive amount of proliferating stem cells (neoblasts) in their bodies. Using planarian Schmidtea mediterranea, we tested CeO2 nanoparticles, well known for their antioxidant activity, along with much less studied CeF3 nanoparticles, for their radioprotective potential. In addition, both CeO2 and CeF3 nanoparticles improve planarian head blastema regeneration after ionizing irradiation by enhancing blastema growth, increasing the number of mitoses and neoblasts' survival, and modulating the expression of genes responsible for the proliferation and differentiation of neoblasts. The CeO2 nanoparticles' action stems directly from their redox activity as ROS scavengers, while the CeF3 nanoparticles' action is mediated by overexpression of "wound-induced genes" and neoblast- and stem cell-regulating genes.


Assuntos
Cério , Nanopartículas , Planárias , Animais , Raios X , Mitógenos/metabolismo , Mediterranea/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cério/farmacologia , Planárias/genética
9.
Biomedicines ; 12(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275372

RESUMO

Ionizing radiation-induced damage in cancer and normal cells leads to apoptosis and cell death, through the intracellular oxidative stress, DNA damage and disorders of their metabolism. Irradiation doses that do not lead to the death of tumor cells can result in the emergence of radioresistant clones of these cells due to the rearrangement of metabolism and the emergence of new mutations, including those in the genes responsible for DNA repair. The search for the substances capable of modulating the functioning of the tumor cell repair system is an urgent task. Here we analyzed the effect of cerium(III) fluoride nanoparticles (CeF3 NPs) on normal (human mesenchymal stem cells-hMSC) and cancer (MCF-7 line) human cells after X-ray radiation. CeF3 NPs effectively prevent the formation of hydrogen peroxide and hydroxyl radicals in an irradiated aqueous solution, showing pronounced antioxidant properties. CeF3 NPs are able to protect hMSC from radiation-induced proliferation arrest, increasing their viability and mitochondrial membrane potential, and, conversely, inducing the cell death of MCF-7 cancer cells, causing radiation-induced mitochondrial hyperpolarization. CeF3 NPs provided a significant decrease in the number of double-strand breaks (DSBs) in hMSC, while in MCF-7 cells the number of γ-H2AX foci dramatically increased in the presence of CeF3 4 h after irradiation. In the presence of CeF3 NPs, there was a tendency to modulate the expression of most analyzed genes associated with the development of intracellular oxidative stress, cell redox status and the DNA-repair system after X-ray irradiation. Cerium-containing nanoparticles are capable of providing selective protection of hMSC from radiation-induced injuries and are considered as a platform for the development of promising clinical radioprotectors.

10.
Nanomaterials (Basel) ; 12(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080071

RESUMO

We studied the toxic effects of cerium and fluoride species on human dental pulp stem cells and epithelial cells of Cercopithecus aethiops as a surrogate for the human oral mucosa. The sequential use of CeCl3 and NH4F solutions in equimolar sub-toxic concentrations enabled the possible toxic effects of individual components to be avoided, ensuring the preservation of the metabolic activity of the cells due to the formation of CeF3 nanoparticles. Cerium fluoride nanoparticles and terbium-doped cerium fluoride nanoparticles exhibited neither cytotoxicity nor genotoxicity to dental pulp stem cells, even at high concentrations (10-4 M). In millimolar concentrations (from 10-5-10-6 M), these nanoparticles significantly increased the expression of genes responsible for the cell cycle, differentiation and proliferation. The formation of cerium fluoride on the surface of the mucous membrane and teeth provided protection against the development of carious lesions, periodontitis, ROS attacks and other inflammatory diseases of the oral cavity. Luminescent CeF3: Tb nanoparticles enabled the visualization of tooth enamel microcracks.

11.
Antioxidants (Basel) ; 10(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34829634

RESUMO

Ionising radiation causes the death of the most actively dividing cells, thus leading to depletion of the stem cell pool. Planarians are invertebrate flatworms that are unique in that their stem cells, called neoblasts, constantly replace old, damaged, or dying cells. Amenability to efficient RNAi treatments, the rapid development of clear phenotypes, and sensitivity to ionising radiation, combined with new genomic technologies, make planarians an outstanding tool for the discovery of potential radioprotective agents. In this work, using the well-known antioxidant N-acetylcysteine, planarians are, for the first time, shown to be an excellent model system for the fast and effective screening of novel radioprotective and radio-sensitising substances. In addition, a panel of measurable parameters that can be used for the study of radioprotective effects on this model is suggested.

12.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202684

RESUMO

The antimicrobial, anti-inflammatory and tissue-stimulating effects of cold argon atmospheric plasma (CAAP) accelerate its use in various fields of medicine. Here, we investigated the effects of CAAP at different radiation doses on mesenchymal stem cells (MSCs) and human osteosarcoma (MNNG/HOS) cells. We observed an increase in the growth rate of MSCs at sufficiently low irradiation doses (10-15 min) of CAAP, while the growth of MNNG/HOS cells was slowed down to 41% at the same irradiation doses. Using flow cytometry, we found that these effects are associated with cell cycle arrest and extended death of cancer cells by necrosis. Reactive oxygen species (ROS) formation was detected in both types of cells after 15 min of CAAP treatment. Evaluation of the genes' transcriptional activity showed that exposure to low doses of CAAP activates the expression of genes responsible for proliferation, DNA replication, and transition between phases of the cell cycle in MSCs. There was a decrease in the transcriptional activity of most of the studied genes in MNNG/HOS osteosarcoma cancer cells. However, increased transcription of osteogenic differentiation genes was observed in normal and cancer cells. The selective effects of low and high doses of CAAP treatment on cancer and normal cells that we found can be considered in terms of hormesis. The low dose of cold argon plasma irradiation stimulated the vital processes in stem cells due to the slight generation of reactive oxygen species. In cancer cells, the same doses evidently lead to the formation of oxidative stress, which was accompanied by a proliferation inhibition and cell death. The differences in the cancer and normal cells' responses are probably due to different sensitivity to exogenous oxidative stress. Such a selective effect of CAAP action can be used in the combined therapy of oncological diseases such as skin neoplasms, or for the removal of remaining cancer cells after surgical removal of a tumor.


Assuntos
Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Gases em Plasma/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
13.
Polymers (Basel) ; 13(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207191

RESUMO

A technique for the fabrication of bacterial cellulose-based films with CeO2 nanofiller has been developed. The structural and morphological characteristics of the materials have been studied, their thermal and mechanical properties in dry and swollen states having been determined. The preparation methodology makes it possible to obtain composites with a uniform distribution of nanoparticles. The catalytic effect of ceria, regarding the thermal oxidative destruction of cellulose, has been confirmed by TGA and DTA methods. An increase in CeO2 content led to an increase in the elastic modulus (a 1.27-fold increase caused by the introduction of 5 wt.% of the nanofiller into the polymer) and strength of the films. This effect is explained by the formation of additional links between polymer macro-chains via the nanoparticles' surface. The materials fabricated were characterized by a limited ability to swell in water. Swelling caused a 20- to 30-fold reduction in the stiffness of the material, the mechanical properties of the films in a swollen state remaining germane to their practical use. The application of the composite films in cell engineering as substrates for the stem cells' proliferation has been studied. The increase in CeO2 content in the films enhanced the proliferative activity of embryonic mouse stem cells. The cells cultured on the scaffold containing 5 wt.% of ceria demonstrated increased cell survival and migration activity. An analysis of gene expression confirmed improved cultivation conditions on CeO2-containing scaffolds.

14.
Polymers (Basel) ; 13(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802821

RESUMO

The development of advanced composite biomaterials combining the versatility and biodegradability of polymers and the unique characteristics of metal oxide nanoparticles unveils new horizons in emerging biomedical applications, including tissue regeneration, drug delivery and gene therapy, theranostics and medical imaging. Nanocrystalline cerium(IV) oxide, or nanoceria, stands out from a crowd of other metal oxides as being a truly unique material, showing great potential in biomedicine due to its low systemic toxicity and numerous beneficial effects on living systems. The combination of nanoceria with new generations of biomedical polymers, such as PolyHEMA (poly(2-hydroxyethyl methacrylate)-based hydrogels, electrospun nanofibrous polycaprolactone or natural-based chitosan or cellulose, helps to expand the prospective area of applications by facilitating their bioavailability and averting potential negative effects. This review describes recent advances in biomedical polymeric material practices, highlights up-to-the-minute cerium oxide nanoparticle applications, as well as polymer-nanoceria composites, and aims to address the question: how can nanoceria enhance the biomedical potential of modern polymeric materials?

15.
RSC Adv ; 11(56): 35351-35360, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35493182

RESUMO

Cerium dioxide nanoparticles have a special place among engineered nanomaterials due to the wide range of their enzyme-like activities. They possess SOD-, catalase- and peroxidase-like properties, as well as recently discovered phosphatase-, photolyase-, phospholipase- and nuclease-like properties. Advancing biomedical applications of CeO2-based nanozymes requires an understanding of the features and mechanisms of the redox activity of CeO2 nanoparticles when entering the vascular bed, especially when interacting with lipid-protein supramolecular complexes (biomembranes and lipoproteins). In this paper, CeO2 nanoparticles are shown to possess two further types of nanozyme activity, namely lipo- and phospholipoperoxidase-like activities. Compared to a strong blood prooxidant, hemoglobin, CeO2 nanoparticles act as a mild oxidising agent, since they exhibit a 106 times lower, and 20 times lower, prooxidant capacity towards linoleic acid and phosphatidylcholine hydroperoxides, respectively. Compared to the widespread pharmacological preparation of iron, Fe(iii) carboxymaltose (antianemic preparation Ferinject®), the prooxidant capacity of CeO2 nanoparticles towards lipid and phospholipid substrates has been shown to be 102 times lower, and 4 times higher, respectively. The data obtained on the mechanism of the interaction of nanodisperse CeO2 with the main components of biological membranes, lipids and phospholipids enable the substantial expansion of the scope of biomedical applications of CeO2 nanozymes.

16.
Mater Sci Eng C Mater Biol Appl ; 108: 110494, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31924007

RESUMO

Photochromic tungsten oxide (WO3) nanoparticles stabilized by polyvinylpyrrolidone (PVP) were synthesized to evaluate their potential for biomedical applications. PVP-stabilized tungsten oxide nanoparticles demonstrated a highly selective cytotoxic effect on normal and cancer cells in vitro. WO3 nanoparticles were found to induce substantial cell death in osteosarcoma cells (MNNG/HOS cell line) with a half-maximal inhibitory concentration (IC50) of 5 mg/mL, while producing no, or only minor, toxicity in healthy human mesenchymal stem cells (hMSc). WO3 nanoparticles induced intracellular oxidative stress, which led to apoptosis type cell death. The selective anti-cancer effects of WO3 nanoparticles are due to the pH sensitivity of tungsten oxide and its capability of reactive oxygen species (ROS) generation, which is expressed in the modulation of genes involved in reactive oxygen species metabolism, mitochondrial dysfunction, and apoptosis.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Óxidos/química , Povidona/farmacologia , Tungstênio/química , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Mitocôndrias/patologia , Nanopartículas/química , Osteossarcoma/tratamento farmacológico , Estresse Oxidativo , Espécies Reativas de Oxigênio
17.
ACS Appl Mater Interfaces ; 10(17): 14367-14377, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29633830

RESUMO

The design of novel, effective drug delivery systems is one of the most promising ways to improve the treatment of socially important diseases. This article reports on an innovative approach to the production of composite microcontainers (microcapsules) bearing advanced protective functions. Cerium oxide (CeO2) nanoparticles were incorporated into layer-by-layer polyelectrolyte microcapsules as a protective shell for an encapsulated enzyme (luciferase of Photinus pyralis), preventing its oxidation by hydrogen peroxide, the most abundant type of reactive oxygen species (ROS). The protective effect depends on CeO2 loading in the shell: at a low concentration, CeO2 nanoparticles only scavenge ROS, whereas a higher content leads to a decrease in access for both ROS and the substrate to the enzyme in the core. By varying the nanoparticle concentration in the microcapsule, it is possible to control the level of core shielding, from ROS filtering to complete blocking. A comprehensive analysis of microcapsules by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, confocal laser scanning microscopy, and energy-dispersive X-ray spectroscopy techniques was carried out. Composite microcapsules decorated with CeO2 nanoparticles and encapsulated luciferase were shown to be easily taken up by rat B-50 neuronal cells; they are nontoxic and are able to protect cells from the oxidative stress induced by hydrogen peroxide. The approach demonstrated that the active protection of microencapsulated substances by CeO2 nanoparticles can be used in the development of new drug delivery and diagnostic systems.


Assuntos
Nanopartículas , Animais , Cápsulas , Cério , Luciferases , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio
18.
ACS Biomater Sci Eng ; 4(7): 2453-2462, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435109

RESUMO

Cerium oxide nanoparticles (nanoceria) are regarded as one of the most promising inorganic antioxidants for biomedical applications. Considering nanoceria as a potential therapeutic agent, we aimed to develop a robust system for its intracellular delivery using layer-by-layer polyelectrolyte microcapsules. We have shown that citrate-stabilized cerium oxide nanoparticles can be effectively incorporated into the structure of polyelectrolyte microcapsules made from biodegradable and nonbiodegradable polymers. The structure and morphology of synthesized microcapsules were investigated and analyzed using confocal laser scanning microscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and UV/vis spectroscopy. Results of experiments in vitro on B50 neuroblastoma cells confirmed nanoceria delivery into the cell while maintaining their antioxidant properties. The results presented confirm polyelectrolyte microcapsules to be an efficient intracellular delivery system for therapeutic nanoparticles.

19.
Mater Sci Eng C Mater Biol Appl ; 68: 406-413, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524035

RESUMO

The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10(-3)М-10(-9)M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cério , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Nanopartículas/química , Animais , Antioxidantes/metabolismo , Cério/química , Cério/farmacologia , Relação Dose-Resposta a Droga , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
20.
Beilstein J Nanotechnol ; 7: 1905-1917, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144539

RESUMO

Luminescent organic dots (O-dots) were synthesized via a one-pot, solvent-free thermolysis of citric acid in urea melt. The influence of the ratio of the precursors and the duration of the process on the properties of the O-dots was established and a mechanism of their formation was hypothesized. The multicolour luminescence tunability and toxicity of synthesized O-dots were extensively studied. The possible applications of O-dots for alive/fixed cell staining and labelling of layer-by-layer polyelectrolyte microcapsules were evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...