Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124946

RESUMO

The high silicon content in rice plant waste, specifically rice husks, makes this waste by-product attractive for the extraction and valorization of silicon oxide, which is widely used as an inert support in catalysis, drug delivery and molecular sieving. The procedures currently used for the treatment of plant biomass make extensive use of mineral acids (HCl, H2SO4, HNO3), which, besides them being potential environmental pollutants, reduce the yield and worsen the chemical-physical properties of the product. In this study, an evaluation of the easy treatment of rice husks by benchmarking different, more eco-friendly carboxylic acids in order to obtain a mesoporous SiO2 with an alveolar structure and a relatively high surface area and pore volume (300-420 m2/g, 0.37-0.46 cm3/g) is presented. The obtained mesoporous silicas are characterized by worm-like pores with a narrow size distribution and a maximum in the range of 3.4-3.5 nm. The mesoporous structure of the obtained materials was also confirmed by TEM. The complete removal of the organic part of the rice husks in the final materials was evidenced by thermogravimetric analysis. The high purity of the obtained mesoporous silica was detected using ICP analysis (98.8 wt. %). The structure peculiarities of the obtained mesoporous silicas were also characterized by solid-state NMR and ATR-FTIR spectroscopies. The morphology of the mesoporous silica was investigated by SEM.


Assuntos
Oryza , Dióxido de Silício , Oryza/química , Dióxido de Silício/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
2.
Pharmaceutics ; 16(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39204349

RESUMO

For centuries, humans have relied on natural products to prevent and treat numerous health issues. However, biologically active compounds from natural sources, such as polyphenols, face considerable challenges, due to their low solubility, rapid metabolism, and instability, which hinder their effectiveness. Advances in the nanotechnologies have provided solutions to overcoming these problems through the use of porous silica materials as polyphenol carriers. These materials possess unique properties, such as a high specific surface area, adjustable particle and pore sizes, and a surface that can be easily and selectively modified, which favor their application in delivery systems of polyphenols. In this review, we summarize and discuss findings on how the pore and particle size, structure, and surface modification of silica materials influence the preparation of efficient delivery systems for biologically active polyphenols from natural origins. The available data demonstrate how parameters such as adsorption capacity, release and antioxidant properties, bioavailability, solubility, stability, etc., of the studied delivery systems could be affected by the structural and chemical characteristics of the porous silica carriers. Results in the literature confirm that by regulating the structure and selecting the appropriate surface modifications, the health benefits of the loaded bioactive molecules can be significantly improved.

5.
J Intensive Care Med ; 39(5): 477-483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38037310

RESUMO

BACKGROUND: During cardiopulmonary resuscitation, intravenous thrombolytics are commonly used for patients whose underlying etiology of cardiac arrest is presumed to be related to pulmonary embolism (PE). METHODS: We performed a systematic review and meta-analysis of the existing literature that focused on the use of thrombolytics for cardiac arrest due to presumed or confirmed PE. Outcomes of interest were return of spontaneous circulation (ROSC), survival to hospital discharge, neurologically-intact survival, and bleeding complications. RESULTS: Thirteen studies with a total of 803 patients were included in this review. Most studies included were single-armed and retrospective. Thrombolytic agent and dose were heterogeneous between studies. Among those with control groups, intravenous thrombolysis was associated with higher rates of ROSC (OR 2.55, 95% CI = 1.50-4.34), but without a significant difference in survival to hospital discharge (OR 1.41, 95% CI = 0.79-2.41) or bleeding complications (OR 2.21, 0.95-5.17). CONCLUSIONS: Use of intravenous thrombolytics in cardiac arrest due to confirmed or presumed PE is associated with increased ROSC but not survival to hospital discharge or change in bleeding complications. Larger randomized studies are needed. Currently, we recommend continuing to follow existing consensus guidelines which support use of thrombolytics for this indication.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Parada Cardíaca Extra-Hospitalar , Embolia Pulmonar , Humanos , Fibrinolíticos/uso terapêutico , Estudos Retrospectivos , Embolia Pulmonar/complicações , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/etiologia , Parada Cardíaca Extra-Hospitalar/complicações
7.
BMC Infect Dis ; 23(1): 806, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37974125

RESUMO

BACKGROUND: Since its beginnings in 2019, the COVID-19 pandemic is still a problem of global medical concern. Southern Vietnam is one of the country's vast regions, including 20 provinces and the densely populated metropolis Ho Chi Minh City. A randomized retrospective study was performed to investigate the epidemiology and genetic diversity of COVID-19. Whole-genome sequencing of 126 SARS-CoV-2 samples collected from Southern Vietnam between January 2020 and December 2021 revealed the main circulating variants and their distribution. METHODS: Epidemiological data were obtained from the Department of Preventive Medicine of the Vietnamese Ministry of Health. To identify circulating variants, RNA, extracted from 126 nasopharyngeal swabs of patients with suspected COVID-19 were sequenced on Illunina MiSeq to obtain near complete genomes SARS-CoV-2. RESULTS: Due to the effectiveness of restrictive measures in Vietnam, it was possible to keep incidence at a low level. The partial relaxation of restrictive measures, and the spread of Delta lineages, contributed to the beginning of a logarithmic increase in incidence. Lineages 20A-H circulated in Southern Vietnam during 2020. Spread of the Delta lineage in Southern Vietnam began in March 2021, causing a logarithmic rise in the number of COVID-19 cases. CONCLUSIONS: Pandemic dynamics in Southern Vietnam feature specific variations in incidence, and these reflect the success of the restrictive measures put in place during the early stages of the pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Variação Genética , Pandemias , Estudos Retrospectivos , SARS-CoV-2/genética , Vietnã/epidemiologia
8.
Nanomaterials (Basel) ; 13(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686936

RESUMO

High surface-area, mesoporous CeO2, ZrO2, and Ce-Zr composite nanoparticles were developed using the hydrothermal template-assisted synthesis method. Samples were characterized using XRD, N2 physisorption, TEM, XPS, and FT-IR spectroscopic methods. The CO2 adsorption ability of the obtained materials was tested under dynamic and equilibrium conditions. A high CO2 adsorption capacity in CO2/N2 flow or CO2/N2/H2O was determined for all studied adsorbents depending on their composition flow. A higher CO2 adsorption was registered for Ce-Zr composite nanomaterials due to the presence of strong O2- base sites and enriched surface oxygen species. The role of the Ce/Zr ratio is the process of the formation of highly active and selective adsorption sites is discussed. The calculated heat of adsorption revealed the processes of chemisorption and physisorption. Experimental data could be appropriately described by the Yoon-Nelson kinetic model. The composites reused in five adsorption/desorption cycles showed a high stability with a slight decrease in CO2 adsorption capacities in dry flow and in the presence of water vapor.

9.
Materials (Basel) ; 16(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37297313

RESUMO

Adsorption methods for CO2 capture are characterized by high selectivity and low energy consumption. Therefore, the engineering of solid supports for efficient CO2 adsorption attracts research attention. Modification of mesoporous silica materials with tailor-made organic molecules can greatly improve silica's performance in CO2 capture and separation. In that context, a new derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, possessing an electron-rich condensed aromatic structure and also known for its anti-oxidative properties, was synthesized and applied as a modifying agent of 2D SBA-15, 3D SBA-16, and KIT-6 silicates. The physicochemical properties of the initial and modified materials were studied using nitrogen physisorption and temperature-gravimetric analysis. The adsorption capacity of CO2 was measured in a dynamic CO2 adsorption regime. The three modified materials displayed a higher capacity for CO2 adsorption than the initial ones. Among the studied sorbents, the modified mesoporous SBA-15 silica showed the highest adsorption capacity for CO2 (3.9 mmol/g). In the presence of 1 vol.% water vapor, the adsorption capacities of the modified materials were enhanced. Total CO2 desorption from the modified materials was achieved at 80 °C. The obtained silica materials displayed stable performance in five CO2 adsorption/desorption cycles. The experimental data can be appropriately described by the Yoon-Nelson kinetic model.

10.
ACS Appl Mater Interfaces ; 15(23): 28747-28762, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37264972

RESUMO

A γ-alumina support functionalized with transition metals is one of the most widely used industrial catalysts for the total oxidation of volatile organic compounds (VOCs) as air pollutants at higher temperatures (280-450 °C). By rational design of a bimetal CuFe-γ-alumina catalyst, synthesized from a dawsonite alumina precursor, the activity in total oxidation of toluene as a model VOC at a lower temperature (200-380 °C) is achieved. A fundamental understanding of the catalyst and the reaction mechanism is elucidated by advanced microscopic and spectroscopic characterizations as well as by temperature-programmed surface techniques. The nature of the metal-support bonding and the optimal abundance between Cu-O-Al and Fe-O-Al species in the catalysts leads to synergistic catalytic activity promoted by small amounts of iron (Fe/Al = 0.005). The change in the metal oxide-cluster alumina interface is related to the nature of the surfaces to which the Cu atoms attach. In the most active catalyst, the CuO6 octahedra are attached to 4 Al atoms, while in the less active catalyst, they are attached to only 3 Al atoms. The oxidation of toluene occurs via the Langmuir-Hinshelwood mechanism. The presented material introduces a prospective family of low-cost and scalable oxidation catalysts with superior efficiency at lower temperatures.

11.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768696

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for over two years of the COVID-19 pandemic and a global health emergency. Genomic surveillance plays a key role in overcoming the ongoing COVID-19 pandemic despite its relative successive waves and the continuous emergence of new variants. Many technological approaches are currently applied for the whole genome sequencing (WGS) of SARS-CoV-2. They differ in key stages of the process, and they feature some differences in genomic coverage, sequencing depth, and in the accuracy of variant-calling options. In this study, three different protocols for SARS-CoV-2 WGS library construction are compared: an amplicon-based protocol with a commercial primer panel; an amplicon-based protocol with a custom panel; and a hybridization capture protocol. Specific differences in sequencing depth and genomic coverage as well as differences in SNP number were found. The custom panel showed suitable results and a predictable output applicable for the epidemiological surveillance of SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Biblioteca Gênica , Genoma Viral
12.
Molecules ; 29(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202681

RESUMO

Monometallic (Ni, Co, Cu) and bimetallic (Ni-Co, Ni-Cu) 10-20 wt.% metal containing catalysts supported on fly ash zeolite were prepared by post-synthesis impregnation method. The catalysts were characterized by X-ray powder diffraction, N2 physisorption, XPS and H2-TPR methods. Finely dispersed metal oxides and mixed oxides were detected after the decomposition of the impregnating salt on the relevant zeolite support. Via reduction intermetallic, NiCo and NiCu phases were identified in the bimetallic catalysts. The catalysts were studied in hydrodeoxygenation of lignocellulosic biomass-derived levulinic acid to γ-valerolactone (GVL) in a batch system by water as a solvent. Bimetallic, 10 wt.% Ni, and 10 wt.% Cu or Co containing fly ash zeolite catalysts showed higher catalytic activity than monometallic ones. Their selectivity to GVL reached 70-85% at about 100% conversion. The hydrogenation activity of catalysts was found to be stronger compared to their hydration ability; therefore, the reaction proceeds through formation of 4-hydroxy pentanoic acid as the only intermediate compound.

13.
Front Chem ; 10: 1039716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531329

RESUMO

Disposal of copper, manganese and iron is particularly problematic in wastewater of metallurgical and galvanization plants, the electronics industry and agriculture. On the other hand, volatile organic compounds (VOCs), emitted from industrial processes, transportation and consumer products are the main class of air pollutants. The study revealed the potential of waste metal-loaded zeolite, generated through wastewater treatment procedures, to be utilised as an effective VOC removal catalyst for air treatment. In the first step, we have evaluated the sorption performance of natural zeolite clinoptilolite (HEU type), and synthetic zeolite 4A (LTA type) for the simultaneous removal of Cu2+, Mn2+ and Fe3+ species from aqueous solution. By a detailed sorption study, we determined the optimum sorption conditions and maximum metal concentrations in wastewater that can be after treatment disposed of in rivers or municipal plants. The efficiency of both zeolites for metal immobilization was demonstrated for concentrations up to 5 mg metals/1 g zeolite. These waste Cu-, Mn- and Fe-loaded zeolites were thermally treated at 540 °C before the second step, where we evaluated their catalytic performance in removing VOC. The thermally treated waste Cu-, Mn- and Fe-loaded natural zeolite clinoptilolite showed good catalytic performance in total toluene oxidation as a model VOC (conversion rate up to 96% at 510°C) and cycling stability (less than 15% drop in conversion rate in 4 h). In contrast, this is not the case for thermally treated waste Cu-, Mn- and Fe-loaded synthetic zeolite 4A.

14.
Nanomaterials (Basel) ; 12(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080112

RESUMO

Biologically active substances of natural origin offer a promising alternative in skin disease treatment in comparison to synthetic medications. The limiting factors for the efficient application of natural compounds, such as low water solubility and low bioavailability, can be easily overcome by the development of suitable delivery systems. In this study, the exchange with the template procedure was used for the preparation ofa spherical silver-modified mesoporous silica nanocarrier. The initial and drug-loaded formulations are fully characterized by different physico-chemical methods. The incipient wetness impregnation method used to load health-promoting agents, curcumin, and capsaicin in Ag-modified carriers separately or in combinationresulted in high loading efficiency (up to 33 wt.%). The interaction between drugs and carriers was studied by ATR-FTIR spectroscopy. The release experiments of both active substances from the developed formulations were studied in buffers with pH 5.5, and showed improved solubility. Radical scavenging activity and ferric-reducing antioxidant power assays were successfully used for the evaluation of the antiradical and antioxidant capacity of the curcumin or/and capsaicin loaded on mesoporous carriers. Formulations containing a mixture of curcumin and capsaicin were characterized bypotentiation of their antiproliferative effect against maligning cells, and it was confirmed that the system for simultaneous delivery of both drugs has lower IC50 values than the free substances.The antibacterial tests showed better activity of the obtained delivery systems in comparison with the pure curcumin and capsaicin. Considering the obtained results, it can be concluded that the obtained delivery systems are promising for potential dermal treatment.

15.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080151

RESUMO

Monometallic (Cu, Ni) and bimetallic (Cu-Ni) catalysts supported on KIT-6 based mesoporous silica/zeolite composites were prepared using the wet impregnation method. The catalysts were characterized using X-ray powder diffraction, N2 physisorption, SEM, solid state NMR and H2-TPR methods. Finely dispersed NiO and CuO were detected after the decomposition of impregnating salt on the silica carrier. The formation of small fractions of ionic Ni2+ and/or Cu2+ species, interacting strongly with the silica supports, was found. The catalysts were studied in the gas-phase upgrading of lignocellulosic biomass-derived levulinic acid (LA) to γ-valerolactone (GVL). The bimetallic, CuNi-KIT-6 catalyst showed 100% LA conversion at 250 °C and atmospheric pressure. The high LA conversion and GVL yield can be attributed to the high specific surface area and finely dispersed Cu-Ni species in the catalyst. Furthermore, the catalyst also exhibited high stability after 24 h of reaction time with a GVL yield above 80% without any significant change in metal dispersion.


Assuntos
Ácidos Levulínicos , Dióxido de Silício , Hidrogenação , Lactonas , Ácidos Levulínicos/química , Dióxido de Silício/química
16.
Environ Sci Process Impacts ; 24(10): 1934-1944, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36172795

RESUMO

Coal fly ash zeolites (CFAZs) of type X with low (Na-X) and medium (Na-Ca-X) content of calcium were synthesized by alkaline conversion of lignite coal fly ash generated by combustion of lignite with lower and higher limestone amounts, extracted from different coal deposits and burned in separate thermal power plants. The concentration and state of Ca in the zeolites were investigated by energy dispersive X-ray (EDX) analysis and X-ray photoelectron spectroscopy (XPS). CFAZs Na-Ca-X with a medium Ca-content were found to outperform their lower calcium counterparts Na-X in terms of carbon capture capacity. This provoked our research interest in elucidating the role of Ca in the CO2 retaining mechanism. CFAZs Na-X and Na-Ca-X were studied in consecutive dynamic adsorption cycles, after thermal regeneration at a temperature of 80 °C, at which only the physically adsorbed CO2 molecules can be released. Desorption was investigated by thermogravimetric TG-DTG analyses over a wide temperature range. In situ Fourier-transform infrared (FTIR) spectroscopy was performed to elucidate the structural features of Na-X and Na-Ca-X CFAZs and the types of their accessible adsorption sites. It was found that the role of Ca is to increase the number of accessible Na+ cations in SII and SIII positions in the zeolites where they can simultaneously adsorb two CO or CO2 molecules, which benefits their adsorption capacity. This study raises an issue on coal ash classification for the synthesis of zeolites with carbon capture applications.


Assuntos
Cinza de Carvão , Zeolitas , Cinza de Carvão/química , Carvão Mineral/análise , Zeolitas/análise , Zeolitas/química , Adsorção , Cálcio/química , Carbono/química , Dióxido de Carbono/análise , Cátions , Carbonato de Cálcio
17.
Nanomaterials (Basel) ; 12(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35407342

RESUMO

SBA-15 and MCM-48 mesoporous silicas were modified with functionalized (3-aminopropyl)triethoxysilane (APTES) by using the post-synthesis method, thus introducing N- and P-containing groups to the pore surface. The structure of the newly synthesized modifiers (aldimine and aminophosphonate derivatives of (3-aminopropyl)triethoxysilane and their grafting onto the porous matrix were proved by applying multinuclear NMR and FTIR spectroscopies. The content of the grafted functional groups was determined via thermogravimetric analysis. The physicochemical properties of the adsorbent samples were studied by nitrogen physisorption and UV-Vis spectroscopy. The adsorption capacity of CO2 was measured in a dynamic CO2 adsorption regime. The modified silicas displayed an enhanced adsorption capacity compared to the initial material. The 13C NMR spectra with high-power proton decoupling proved the presence of physically captured CO2. A value of 4.60 mmol/g was achieved for the MCM-48 material grafted with the Schiff base residues. The total CO2 desorption was achieved at 40 °C. A slight decrease of about 5% in CO2 adsorption capacities was registered for the modified silicas in three adsorption/desorption cycles, indicating their performance stability.

19.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615398

RESUMO

Transition metals as catalysts for total VOC oxidation at low temperatures (150-280 °C) are a big challenge nowadays. Therefore, iron-modified SBA-15, AlSBA-15, and ZrSBA-15 materials with 0.5 to 5.0 wt.% Fe loading were prepared and tested for toluene oxidation. It was found that increasing Fe loading significantly improved the rate of oxidation and lowered the temperature of achieving 100% removal of toluene from above 500 °C for the supports (AlSBA-15 and ZrSBA-15) to below 400 °C for 5FeZrSBA-15. The formation of finely dispersed iron oxide active sites with a particle size less than 5 nm was observed on all the SBA-15, AlSBA-15, and ZrSBA-15 supports. It was found that the surface properties of the mesoporous support due to the addition of Al or Zr predetermined the type of formed iron oxide species and their localization on the support surface. Fe-containing SBA-15 and AlSBA-15 showed activity in total toluene oxidation at higher temperatures (280-450 °C). However, 5 wt. % Fe-containing ZrSBA-15 showed excellent activity in the total oxidation of toluene as a model VOC at lower temperatures (150-380 °C) due to the synergistic effect of Fe-Zr and the presence of accessible and stable Fe2+/Fe3+ active sites.

20.
Molecules ; 26(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34946777

RESUMO

Mono-, and bimetallic Ni-, Ru-, and Pt-modified nanosized Beta zeolite catalysts were prepared by the post synthesis method and characterized by powder X-ray diffraction (XRD), nitrogen physisorption, HRTEM microscopy, temperature-programmed reduction (TPR-TGA), ATR FT-IR spectroscopy, and by solid-state MAS-NMR spectroscopy. The presence of nanosized nickel-oxide, ruthenium-oxide, and platinum species was detected on the catalysts. The presence of Brønsted and Lewis acid sites, and incorporation of nickel ions into zeolite lattice was proven by FT-IR of adsorbed pyridine. The structural changes in the catalyst matrix were investigated by solid state NMR spectroscopy. The catalysts were used in a gas-phase hydrodemethoxylation and dealkylation of 2-methoxy-4-propylphenol as a lignin derivative molecule for phenol synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA