Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 225: 105859, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492891

RESUMO

Antiviral therapeutics are highly effective countermeasures for the treatment of coronavirus disease 2019 (COVID-19). However, development of resistance to antivirals undermines their effectiveness. Combining multiple antivirals during patient treatment has the potential to overcome the evolutionary selective pressure towards antiviral resistance, as well as provide a more robust and efficacious treatment option. The current evidence for effective antiviral combinations to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication is limited. Here, we demonstrate a combination of nirmatrelvir with ombitasvir, to jointly bring about potent inhibition of SARS-CoV-2 replication. We developed an in vitro 384- well plate cytopathic effect assay for the evaluation of antiviral combinations against Calu-3 cells infected with SARS-CoV-2 and found, that a combination of ombitasvir and nirmatrelvir was synergistic; thereby decreasing the nirmatrelvir IC50 by approx. 16-fold. The increased potency of the nirmatrelvir-ombitasvir combination, over nirmatrelvir alone afforded a greater than 3 log10 reduction in viral titre, which is sufficient to fully prevent the detection of progeny SARS-CoV-2 viral particles at 48 h post infection. The mechanism of this potentiated effect was shown to be, in-part, due to joint inhibition of the 3-chymotrypsin-like protease via a positive allosteric modulation mechanism.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anilidas , Carbamatos , Lactamas , Leucina , Nitrilas , Antivirais , Ritonavir
2.
ACS Nano ; 15(12): 19284-19297, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34739227

RESUMO

Melioidosis caused by the facultative intracellular pathogen Burkholderia pseudomallei is difficult to treat due to poor intracellular bioavailability of antibiotics and antibiotic resistance. In the absence of novel compounds, polymersome (PM) encapsulation may increase the efficacy of existing antibiotics and reduce antibiotic resistance by promoting targeted, infection-specific intracellular uptake. In this study, we developed PMs composed of widely available poly(ethylene oxide)-polycaprolactone block copolymers and demonstrated their delivery to intracellular B. thailandensis infection using multispectral imaging flow cytometry (IFC) and coherent anti-Stokes Raman scattering microscopy. Antibiotics were tightly sequestered in PMs and did not inhibit the growth of free-living B. thailandensis. However, on uptake of antibiotic-loaded PMs by infected macrophages, IFC demonstrated PM colocalization with intracellular B. thailandensis and a significant inhibition of their growth. We conclude that PMs are a viable approach for the targeted antibiotic treatment of persistent intracellular Burkholderia infection.


Assuntos
Burkholderia pseudomallei , Burkholderia , Antibacterianos/farmacologia , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...