Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
SAR QSAR Environ Res ; 35(5): 343-366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776241

RESUMO

Most of pharmaceutical agents display a number of biological activities. It is obvious that testing even one compound for thousands of biological activities is not practically possible. A computer-aided prediction is therefore the method of choice in this case to select the most promising bioassays for particular compounds. Using the PASS Online software, we determined the probable anti-inflammatory action of the 12 new hybrid dithioloquinolinethiones derivatives. Chemical similarity search in the World-Wide Approved Drugs (WWAD) and DrugBank databases did not reveal close structural analogues with the anti-inflammatory action. Experimental testing of anti-inflammatory activity of the synthesized compounds in the carrageenan-induced inflammation mouse model confirmed the computational predictions. The anti-inflammatory activity of the studied compounds (2a, 3a-3k except for 3j) varied between 52.97% and 68.74%, being higher than the reference drug indomethacin (47%). The most active compounds appeared to be 3h (68.74%), 3k (66.91%) and 3b (63.74%) followed by 3e (61.50%). Thus, based on the in silico predictions a novel class of anti-inflammatory agents was discovered.


Assuntos
Anti-Inflamatórios , Carragenina , Relação Quantitativa Estrutura-Atividade , Quinolinas , Animais , Camundongos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Tionas/química , Tionas/farmacologia , Masculino , Edema/tratamento farmacológico , Edema/induzido quimicamente
2.
SAR QSAR Environ Res ; 35(1): 53-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282553

RESUMO

Novel antimycobacterial compounds are needed to expand the existing toolbox of therapeutic agents, which sometimes fail to be effective. In our study we extracted, filtered, and aggregated the diverse data on antimycobacterial activity of chemical compounds from the ChEMBL database version 24.1. These training sets were used to create the classification and regression models with PASS and GUSAR software. The IOC chemical library consisting of approximately 200,000 chemical compounds was screened using these (Q)SAR models to select novel compounds potentially having antimycobacterial activity. The QikProp tool (Schrödinger) was used to predict ADME properties and find compounds with acceptable ADME profiles. As a result, 20 chemical compounds were selected for further biological evaluation, of which 13 were the Schiff bases of isoniazid. To diversify the set of selected compounds we applied substructure filtering and selected an additional 10 compounds, none of which were Schiff bases of isoniazid. Thirty compounds selected using virtual screening were biologically evaluated in a REMA assay against the M. tuberculosis strain H37Rv. Twelve compounds demonstrated MIC below 20 µM (ranging from 2.17 to 16.67 µM) and 18 compounds demonstrated substantially higher MIC values. The discovered antimycobacterial agents represent different chemical classes.


Assuntos
Mycobacterium tuberculosis , Isoniazida/farmacologia , Bases de Schiff/farmacologia , Bases de Schiff/química , Ligantes , Relação Quantitativa Estrutura-Atividade , Antibacterianos/farmacologia , Antituberculosos/farmacologia , Antituberculosos/química , Testes de Sensibilidade Microbiana
3.
SAR QSAR Environ Res ; 34(5): 383-393, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37226878

RESUMO

The human gut microbiota (HGM) comprises a complex population of microorganisms that significantly affect human health, including their influence on xenobiotics metabolism. Many pharmaceuticals are taken orally and thus come into contact with HGM, which can metabolize them. Therefore, it is necessary to evaluate the effect of HGM on the fate of pharmaceuticals in the organism. We have collected information about over 600 compounds from more than eighty publications. At least half of them (329 compounds) are known to be metabolized by HGM. We have used PASS (Prediction of Activity Spectra for Substances) software to build three classification SAR models for HGM-mediated drug metabolism prediction. The first model with an accuracy of prediction 0.85 estimates whether compounds will be metabolized by HGM. The second model with an average accuracy of prediction 0.92 estimates which bacterial genera are responsible for the drug metabolism. The third model with an average accuracy of prediction 0.92 estimates the biotransformation reactions during HGM-mediated drug metabolism. The created models were used to develop the freely available web application MDM-Pred (http://www.way2drug.com/mdm-pred/).


Assuntos
Microbioma Gastrointestinal , Humanos , Relação Quantitativa Estrutura-Atividade , Software , Biologia Computacional , Preparações Farmacêuticas
4.
Mol Inform ; 42(1): e2200176, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075866

RESUMO

Many human diseases including cancer, degenerative and autoimmune disorders, diabetes and others are multifactorial. Pharmaceutical agents acting on a single target do not provide their efficient curation. Multitargeted drugs exhibiting pleiotropic pharmacological effects have certain advantages due to the normalization of the complex pathological processes of different etiology. Extracts of medicinal plants (EMP) containing multiple phytocomponents are widely used in traditional medicines for multifactorial disorders' treatment. Experimental studies of pharmacological potential for multicomponent compositions are quite expensive and time-consuming. In silico evaluation of EMP the pharmacological potential may provide the basis for selecting the most promising directions of testing and for identifying potential additive/synergistic effects. Multiphytoadaptogen (MPhA) containing 70 major phytocomponents of different chemical classes from 40 medicinal plant extracts has been studied in vitro, in vivo and in clinical researches. Antiproliferative and anti-tumor activities have been shown against some tumors as well as evidence-based therapeutic effects against age-related pathologies. In addition, the neuroprotective, antioxidant, antimutagenic, radioprotective, and immunomodulatory effects of MPhA were confirmed. Analysis of the PASS profiles of the biological activity of MPhA phytocomponents showed that most of the predicted anti-tumor and anti-metastatic effects were consistent with the results of laboratory and clinical studies. Antimutagenic, immunomodulatory, radioprotective, neuroprotective and anti-Parkinsonian effects were also predicted for most of the phytocomponents. Effects associated with positive effects on the male and female reproductive systems have been identified too. Thus, PASS and PharmaExpert can be used to evaluate the pharmacological potential of complex pharmaceutical compositions containing natural products.


Assuntos
Produtos Biológicos , Plantas Medicinais , Humanos , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Medicina Tradicional , Produtos Biológicos/farmacologia , Computadores
5.
SAR QSAR Environ Res ; 33(10): 793-804, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36369710

RESUMO

The accuracy and performance of (Q)SAR models depend significantly on the data used for training. Datasets prepared on the basis of publicly available databases contain structures belonging to different chemical classes and have a highly imbalanced actives/inactives ratio. Currently, hundreds of structural descriptors are used in (Q)SAR studies. The abundance of structural descriptors gives rise to the problem of the constructed (Q)SAR models stability. The methods frequently used for the selection of a small fraction of the 'best' descriptors usually do not have sufficient mathematical justification. We propose a new approach to a self-consistent classifier for SAR analysis in order to overcome these problems. Logistic (SCLC) and extreme (SCEC) extensions of self-consistent regression (SCR) were implemented to enhance the classification capabilities of SCR. The approach was applied to classification models' development for inhibiting activity endpoints in HIV-1-related data and toxicity endpoints with subsequent fivefold cross-validation to estimate the models' performance. Comparison of the proposed SCLC and SCEC models with those developed using the original SCR and support vector machine demonstrated the comparable accuracy. Advantages in feature selection using our approach provide more generalizable (Q)SAR models. In particular, the crucial factors responsible for the observed value are determined unambiguously.


Assuntos
Técnicas de Química Analítica , Modelos Teóricos , Relação Quantitativa Estrutura-Atividade , Máquina de Vetores de Suporte
6.
J Cheminform ; 14(1): 55, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964150

RESUMO

MOTIVATION: Application of chemical named entity recognition (CNER) algorithms allows retrieval of information from texts about chemical compound identifiers and creates associations with physical-chemical properties and biological activities. Scientific texts represent low-formalized sources of information. Most methods aimed at CNER are based on machine learning approaches, including conditional random fields and deep neural networks. In general, most machine learning approaches require either vector or sparse word representation of texts. Chemical named entities (CNEs) constitute only a small fraction of the whole text, and the datasets used for training are highly imbalanced. METHODS AND RESULTS: We propose a new method for extracting CNEs from texts based on the naïve Bayes classifier combined with specially developed filters. In contrast to the earlier developed CNER methods, our approach uses the representation of the data as a set of fragments of text (FoTs) with the subsequent preparati`on of a set of multi-n-grams (sequences from one to n symbols) for each FoT. Our approach may provide the recognition of novel CNEs. For CHEMDNER corpus, the values of the sensitivity (recall) was 0.95, precision was 0.74, specificity was 0.88, and balanced accuracy was 0.92 based on five-fold cross validation. We applied the developed algorithm to the extracted CNEs of potential Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. A set of CNEs corresponding to the chemical substances evaluated in the biochemical assays used for the discovery of Mpro inhibitors was retrieved. Manual analysis of the appropriate texts showed that CNEs of potential SARS-CoV-2 Mpro inhibitors were successfully identified by our method. CONCLUSION: The obtained results show that the proposed method can be used for filtering out words that are not related to CNEs; therefore, it can be successfully applied to the extraction of CNEs for the purposes of cheminformatics and medicinal chemistry.

7.
SAR QSAR Environ Res ; 33(4): 273-287, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35469533

RESUMO

Most of pharmaceutical agents exhibit several or even many biological activities. It is clear that testing even one compound for thousands of biological activities is a practically not feasible task. Therefore, computer-aided prediction is the method-of-the-choice to select the most promising bioassays for particular compounds. Using PASS Online software, we determined the likely anti-inflammatory action of the 13 dithioloquinolinethione derivatives with antimicrobial activities. Chemical similarity search in the Cortellis Drug Discovery Intelligence database did not reveal close structural analogues with anti-inflammatory action. Experimental testing of anti-inflammatory activity of the synthesized compounds in carrageenan-induced inflammation mouse model confirmed the computational predictions. The anti-inflammatory activity of the studied compounds was comparable with or higher than the reference drug Indomethacin. Thus, based on the in silico predictions, novel class of the anti-inflammatory agents was discovered.


Assuntos
Anti-Inflamatórios , Relação Quantitativa Estrutura-Atividade , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Carragenina/uso terapêutico , Carragenina/toxicidade , Computadores , Edema/induzido quimicamente , Edema/tratamento farmacológico , Camundongos , Relação Estrutura-Atividade
8.
Biomed Khim ; 67(3): 278-288, 2021 May.
Artigo em Russo | MEDLINE | ID: mdl-34142535

RESUMO

Based on the prediction of biological activity spectra for several secondary metabolites of medicinal plants using the PASS computer program and validation in vitro of the predictions results the priority direction of the pharmaceutical composition Phytoladaptogene (PLA) development was determined. PLA is a complex of structurally diverse small organic compounds including biologically active substances of phytoadaptogenes (ginsenosides from Panax ginseng, rhodionin from Rhodiola rosea and others) compiled considering previously developed pharmaceutical compositions. Two variants of the pharmaceutical composition were studied: - the major and minor variants included 22 and 13 compounds, respectively. The probability of activity exceeds the probability of inactivity for 1400 out of 1945 pharmacological effects and mechanisms predicted by PASS for the major variant of PLA. The wide range of predicted activities is mainly due to the low structural similarity of constituent compounds. An in silico prediction indicates the possibilities of antitumor properties against bladder, stomach, colon, ovarian and cervical cancers both for minor and major PLA compositions. It was found that the highest probability values of activity were predicted for three mechanisms: apoptosis agonist, caspase-3 stimulant, and transcription factor NF-κB inhibitor. According to the PharmaExpert program they are associated with the antitumor effect against bladder cancer. Experimental validation was using the human bladder cancer cell line RT-112. The results of the MTT test have shown that the cytotoxicity of the major PLA variant is higher than that of the minor PLA variant. In vitro experiments performed using two methods (double staining with annexin V and propidium iodide and detection of active caspase-3 in cells) confirmed that the death of bladder cancer cells occurred via the apoptotic mechanism. The data obtained correspond to the results of the prediction and indicate advantages of the major PLA composition. Thus, PLA can become the basis for the development of a drug with the antitumor activity against bladder cancer. The antitumor activity predicted by PASS for other cancers may be the subject of further studies.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Extratos Vegetais/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico
9.
Pharm Chem J ; 54(10): 989-996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456092

RESUMO

An outbreak of a new coronavirus disease (COVID-19) in China in December 2019 became the epicenter for the spread of a global pandemic. The SARS-CoV-2 coronavirus causes a cascade of respiratory diseases similar to severe acute respiratory syndrome (SARS). Currently, there is no effective, specific, and safe treatment for COVID-19 to suppress the virus in the human body. The present study searched for pharmacological substances with antiviral activity for possible drug repositioning based on experimental and theoretical information in a series of publications on in vitro assays of agents against SARS-CoV-2. An analysis identified 46 well-known pharmaceutical substances that could be used for drug repositioning to create a therapy for COVID-19.

10.
Biomed Khim ; 66(1): 30-41, 2020 Jan.
Artigo em Russo | MEDLINE | ID: mdl-32116224

RESUMO

New drug discovery is based on the analysis of public information about the mechanisms of the disease, molecular targets, and ligands, which interaction with the target could lead to the normalization of the pathological process. The available data on diseases, drugs, pharmacological effects, molecular targets, and drug-like substances, taking into account the combinatorics of the associative relations between them, correspond to the Big Data. To analyze such data, the application of computer-aided drug design methods is necessary. An overview of the studies in this area performed by the Laboratory for Structure-Function Based Drug Design of IBMC is presented. We have developed the approaches to identifying promising pharmacological targets, predicting several thousand types of biological activity based on the structural formula of the compound, analyzing protein-ligand interactions based on assessing local similarity of amino acid sequences, identifying likely molecular mechanisms of side effects of drugs, calculating the integral toxicity of drugs taking into account their metabolism, have been developed in the human body, predicting sustainable and sensitive options strains and evaluating the effectiveness of combinations of antiretroviral drugs in patients, taking into account the molecular genetic characteristics of the clinical isolates of HIV-1. Our computer programs are implemented as the web-services freely available on the Internet, which are used by thousands of researchers from many countries of the world to select the most promising substances for the synthesis and determine the priority areas for experimental testing of their biological activity.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Preparações Farmacêuticas/química , Descoberta de Drogas , Humanos , Ligantes , Software
11.
Int J Antimicrob Agents ; 55(3): 105884, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31931149

RESUMO

Griseofulvin is a well-known antifungal drug that was launched in 1962 by Merck & Co. for the treatment of dermatophyte infections. However, according to predictions using the Way2Drug computational drug repurposing platform, it may also have antibacterial activity. As no confirmation of this prediction was found in the published literature, this study estimated in-silico antibacterial activity for 42 griseofulvin derivatives. Antibacterial activity was predicted for 33 of the 42 compounds, which led to the conclusion that this activity might be considered as typical for this chemical series. Therefore, experimental testing of antibacterial activity was performed on a panel of Gram-positive and Gram-negative micro-organisms. Antibacterial activity was evaluated using the microdilution method detecting the minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). The tested compounds exhibited potent antibacterial activity against all the studied bacteria, with MIC and MBC values ranging from 0.0037 to 0.04 mg/mL and from 0.01 to 0.16 mg/mL, respectively. Activity was 2.5-12 times greater than that of ampicillin and 2-8 times greater than that of streptomycin, which were used as the reference drugs. Similarity analysis for all 42 compounds with the (approximately) 470,000 drug-like compounds indexed in the Clarivate Analytics Integrity database confirmed the significant novelty of the antibacterial activity for the compounds from this chemical class. Therefore, this study demonstrated that by using computer-aided prediction of biological activity spectra for a particular chemical series, it is possible to identify typical biological activities which may be used for discovery of new applications (e.g. drug repurposing).


Assuntos
Antibacterianos/farmacologia , Reposicionamento de Medicamentos , Griseofulvina/farmacologia , Antibacterianos/química , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Griseofulvina/análogos & derivados , Humanos , Testes de Sensibilidade Microbiana
12.
SAR QSAR Environ Res ; 30(10): 759-773, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31547686

RESUMO

Existing data on structures and biological activities are limited and distributed unevenly across distinct molecular targets and chemical compounds. The question arises if these data represent an unbiased sample of the general population of chemical-biological interactions. To answer this question, we analyzed ChEMBL data for 87,583 molecules tested against 919 protein targets using supervised and unsupervised approaches. Hierarchical clustering of the Murcko frameworks generated using Chemistry Development Toolkit showed that the available data form a big diffuse cloud without apparent structure. In contrast hereto, PASS-based classifiers allowed prediction whether the compound had been tested against the particular molecular target, despite whether it was active or not. Thus, one may conclude that the selection of chemical compounds for testing against specific targets is biased, probably due to the influence of prior knowledge. We assessed the possibility to improve (Q)SAR predictions using this fact: PASS prediction of the interaction with the particular target for compounds predicted as tested against the target has significantly higher accuracy than for those predicted as untested (average ROC AUC are about 0.87 and 0.75, respectively). Thus, considering the existing bias in the data of the training set may increase the performance of virtual screening.


Assuntos
Descoberta de Drogas , Relação Estrutura-Atividade , Análise por Conglomerados , Simulação por Computador , Relação Quantitativa Estrutura-Atividade
13.
SAR QSAR Environ Res ; 30(10): 751-758, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31542944

RESUMO

Metabolite identification is an essential part of the drug discovery and development process. Experimental methods allow identifying metabolites and estimating their relative amount, but they require cost-intensive and time-consuming techniques. Computational methods for metabolite prediction are devoid of these shortcomings and may be applied at the early stage of drug discovery. In this study, we investigated the possibility of creating SAR models for the prediction of the qualitative metabolite yield ('major', 'minor', "trace" and "negligible") depending on species and biological experimental systems. In addition, we have created models for prediction of xenobiotic excretion depending on its administration route for different species. The prediction is based on an algorithm of naïve Bayes classifier implemented in PASS software. The average accuracy of prediction was 0.91 for qualitative metabolite yield prediction and 0.89 for prediction of xenobiotic excretion. The created models were included as a component of MetaTox web application, which allows predicting the xenobiotic metabolism pathways ( http://www.way2drug.com/mg ).


Assuntos
Descoberta de Drogas , Xenobióticos/metabolismo , Teorema de Bayes , Biologia Computacional , Relação Estrutura-Atividade
14.
SAR QSAR Environ Res ; 30(9): 655-664, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31482727

RESUMO

Simultaneous use of the drugs may lead to undesirable Drug-Drug Interactions (DDIs) in the human body. Many DDIs are associated with changes in drug metabolism that performed by Drug-Metabolizing Enzymes (DMEs). In this case, DDI manifests itself as a result of the effect of one drug on the biotransformation of other drug(s), its slowing down (in the case of inhibiting DME) or acceleration (in case of induction of DME), which leads to a change in the pharmacological effect of the drugs combination. We used OpeRational ClassificAtion (ORCA) system for categorizing DDIs. ORCA divides DDIs into five classes: contraindicated (class 1), provisionally contraindicated (class 2), conditional (class 3), minimal risk (class 4), no interaction (class 5). We collected a training set consisting of several thousands of drug pairs. Algorithm of PASS program was used for the first, second and third classes DDI prediction. Chemical descriptors called PoSMNA (Pairs of Substances Multilevel Neighbourhoods of Atoms) were developed and implemented in PASS software to describe in a machine-readable format drug substances pairs instead of the single molecules. The average accuracy of DDI class prediction is about 0.84. A freely available web resource for DDI prediction was developed (http://way2drug.com/ddi/).


Assuntos
Interações Medicamentosas , Relação Quantitativa Estrutura-Atividade , Software , Humanos
15.
Biomed Khim ; 65(2): 73-79, 2019 Feb.
Artigo em Russo | MEDLINE | ID: mdl-30950810

RESUMO

Despite significant advances in the application of highly active antiretroviral therapy, the development of new drugs for the treatment of HIV infection remains an important task because the existing drugs do not provide a complete cure, cause serious side effects and lead to the emergence of resistance. In 2015, a consortium of American and European scientists and specialists launched a project to create the SAVI (Synthetically Accessible Virtual Inventory) library. Its 2016 version of over 283 million structures of new easily synthesizable organic molecules, each annotated with a proposed synthetic route, were generated in silico for the purpose of searching for safer and more potent pharmacological substances. We have developed an algorithm for comparing large chemical databases (DB) based on the representation of structural formulas in SMILES codes, and evaluated the possibility of detecting new antiretroviral compounds in the SAVI database. After analyzing the intersection of SAVI with 97 million structures of the PubChem database, we found that only a small part of the SAVI (~0.015%) is represented in PubChem, which indicates a significant novelty of this virtual library. However, among those structures, 632 compounds tested for anti-HIV activity were detected, 41 of which had the desired activity. Thus, our studies for the first time demonstrated that SAVI is a promising source for the search for new anti-HIV compounds.


Assuntos
Antirretrovirais/farmacologia , Big Data , Bases de Dados de Compostos Químicos , Descoberta de Drogas , Algoritmos , Infecções por HIV , Humanos
16.
Biomed Khim ; 65(2): 114-122, 2019 Feb.
Artigo em Russo | MEDLINE | ID: mdl-30950816

RESUMO

The majority of xenobiotics undergo a number of chemical reactions known as biotransformation in human body. The biological activity, toxicity, and other properties of the metabolites may significantly differ from those of the parent compound. Not only xenobiotic itself and its final metabolites produced in large quantities, but the intermediate and final metabolites that are formed in trace quantities, can cause undesirable effects. We have developed a freely available web resource MetaTox (http://www.way2drug.com/mg/) for integral assessment of xenobiotics toxicity taking into account their metabolism in the humans. The generation of the metabolite structures is based on the reaction fragments. The estimates of the probability of the reaction of a certain class and the probability of site of biotransformation are used at the generation of the xenobiotic metabolism pathways. The web resource MetaTox allows researchers to assess the metabolism of compounds in the humans and to obtain assessment of their acute, chronic toxicity, and adverse effects.


Assuntos
Biotransformação , Inativação Metabólica , Software , Xenobióticos/metabolismo , Humanos , Internet
17.
SAR QSAR Environ Res ; 29(1): 69-81, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29256630

RESUMO

Traditional knowledge guides the use of plants for restricted therapeutic indications, but their pharmacological actions may be found beyond their ethnic therapeutic indications employing emerging computational tools. In this context, the present study was envisaged to explore the novel pharmacological effect of Achyranthes aspera (A. aspera) using PASS and PharmaExpert software tools. Based on the predicted mechanisms of the antidepressant effect for all analysed phytoconstituents of A. aspera, one may suggest its significant antidepressant action. The possible mechanism of this novel pharmacological effect is the enhancement of serotonin release, in particular caused by hexatriacontane. Therefore, pharmacological validation of the methanolic extract, hexatriacontane rich (HRF) and hexatriacontane lacking fraction (HLF) of A. aspera was carried out using the Forced Swimming Test and Tail suspension test in mice. The cortical and hippocampal monoamine and their metabolite levels were measured using high performance liquid chromatography (HPLC). A. aspera methanolic extract, HRF treatments showed a significant antidepressant effect comparable to imipramine. Further, the corresponding surge in cortical and hippocampal monoamine and their metabolite levels was also observed with these treatments. In conclusion, A. aspera has shown a significant antidepressant effect, possibly due to hexatriacontane, by raising monoamine levels.


Assuntos
Achyranthes/química , Antidepressivos/efeitos adversos , Animais , Antidepressivos/química , Descoberta de Drogas , Feminino , Elevação dos Membros Posteriores , Masculino , Camundongos , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Natação
18.
SAR QSAR Environ Res ; 28(11): 913-926, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29206500

RESUMO

Molecular property diagnostic suite (MPDS) is a Galaxy-based open source drug discovery and development platform. MPDS web portals are designed for several diseases, such as tuberculosis, diabetes mellitus, and other metabolic disorders, specifically aimed to evaluate and estimate the drug-likeness of a given molecule. MPDS consists of three modules, namely data libraries, data processing, and data analysis tools which are configured and interconnected to assist drug discovery for specific diseases. The data library module encompasses vast information on chemical space, wherein the MPDS compound library comprises 110.31 million unique molecules generated from public domain databases. Every molecule is assigned with a unique ID and card, which provides complete information for the molecule. Some of the modules in the MPDS are specific to the diseases, while others are non-specific. Importantly, a suitably altered protocol can be effectively generated for another disease-specific MPDS web portal by modifying some of the modules. Thus, the MPDS suite of web portals shows great promise to emerge as disease-specific portals of great value, integrating chemoinformatics, bioinformatics, molecular modelling, and structure- and analogue-based drug discovery approaches.


Assuntos
Descoberta de Drogas/métodos , Tratamento Farmacológico/métodos , Internet , Relação Quantitativa Estrutura-Atividade , Biologia Computacional , Humanos , Modelos Moleculares
19.
SAR QSAR Environ Res ; 28(10): 843-862, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29183230

RESUMO

Drug repurposing provides a non-laborious and less expensive way for finding new human medicines. Computational assessment of bioactivity profiles shed light on the hidden pharmacological potential of the launched drugs. Currently, several freely available computational tools are available via the Internet, which predict multitarget profiles of drug-like compounds. They are based on chemical similarity assessment (ChemProt, SuperPred, SEA, SwissTargetPrediction and TargetHunter) or machine learning methods (ChemProt and PASS). To compare their performance, this study has created two evaluation sets, consisting of (1) 50 well-known repositioned drugs and (2) 12 drugs recently patented for new indications. In the first set, sensitivity values varied from 0.64 (TarPred) to 1.00 (PASS Online) for the initial indications and from 0.64 (TarPred) to 0.98 (PASS Online) for the repurposed indications. In the second set, sensitivity values varied from 0.08 (SuperPred) to 1.00 (PASS Online) for the initial indications and from 0.00 (SuperPred) to 1.00 (PASS Online) for the repurposed indications. Thus, this analysis demonstrated that the performance of machine learning methods surpassed those of chemical similarity assessments, particularly in the case of novel repurposed indications.


Assuntos
Reposicionamento de Medicamentos/instrumentação , Reposicionamento de Medicamentos/métodos , Internet , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Software
20.
SAR QSAR Environ Res ; 28(10): 815-832, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29183232

RESUMO

Developing effective inhibitors against Mycobacterium tuberculosis (Mtb) is a challenging task, primarily due to the emergence of resistant strains. In this study, we have proposed and implemented an in silico guided polypharmacological approach, which is expected to be effective against resistant strains by simultaneously inhibiting several potential Mtb drug targets. A combination of pharmacophore and QSAR based virtual screening strategy taking three key targets such as InhA (enoyl-acyl-carrier-protein reductase), GlmU (N-acetyl-glucosamine-1-phosphate uridyltransferase) and DapB (dihydrodipicolinate reductase) have resulted in initial 784 hits from Asinex database of 435,000 compounds. These hits were further subjected to docking with 33 Mtb druggable targets. About 110 potential polypharmacological hits were taken by integrating the aforementioned screening protocols. Further screening was conducted by taking various parameters and properties such as cell permeability, drug-likeness, drug-induced phospholipidosisand structural alerts. A consensus analysis has yielded 59 potential hits that pass through all the filters and can be prioritized for effective drug-resistant tuberculosis. This study proposes about nine potential hits which are expected to be promising molecules, having not only drug-like properties, but also being effective against multiple Mtb targets.


Assuntos
Antituberculosos/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Polifarmacologia , Relação Quantitativa Estrutura-Atividade , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...