Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Pathogens ; 12(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38133304

RESUMO

Arboviruses, i.e., viruses transmitted by blood-sucking arthropods, trigger significant global epidemics. Over the past 20 years, the frequency of the (re-)emergence of these pathogens, particularly those transmitted by Aedes and Culex mosquitoes, has dramatically increased. Therefore, understanding how human behavior is modulating population exposure to these viruses is of particular importance. This synthesis explores human behavioral factors driving human exposure to arboviruses, focusing on household surroundings, socio-economic status, human activities, and demographic factors. Household surroundings, such as the lack of water access, greatly influence the risk of arbovirus exposure by promoting mosquito breeding in stagnant water bodies. Socio-economic status, such as low income or low education, is correlated to an increased incidence of arboviral infections and exposure. Human activities, particularly those practiced outdoors, as well as geographical proximity to livestock rearing or crop cultivation, inadvertently provide favorable breeding environments for mosquito species, escalating the risk of virus exposure. However, the effects of demographic factors like age and gender can vary widely through space and time. While climate and environmental factors crucially impact vector development and viral replication, household surroundings, socio-economic status, human activities, and demographic factors are key drivers of arbovirus exposure. This article highlights that human behavior creates a complex interplay of factors influencing the risk of mosquito-borne virus exposure, operating at different temporal and spatial scales. To increase awareness among human populations, we must improve our understanding of these complex factors.

2.
Sci Rep ; 13(1): 18619, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903814

RESUMO

Animal movements are a major driver for the spread of Transboundary Animal Diseases (TADs). These movements link populations that would otherwise be isolated and hence create opportunities for susceptible and infected individuals to meet. We used social network analysis to describe the seasonal network structure of cattle movements in Uganda and unravel critical network features that identify districts or sub-regions for targeted risk-based surveillance and intervention. We constructed weighted, directed networks based on 2019 between-district cattle movements using official livestock mobility data; the purpose of the movement ('slaughter' vs. 'live trade') was used to subset the network and capture the risks more reliably. Our results show that cattle trade can result in local and long-distance disease spread in Uganda. Seasonal variability appears to impact the structure of the network, with high heterogeneity of node and edge activity identified throughout the seasons. These observations mean that the structure of the live trade network can be exploited to target influential district hubs within the cattle corridor and peripheral areas in the south and west, which would result in rapid network fragmentation, reducing the contact structure-related trade risks. Similar exploitable features were observed for the slaughter network, where cattle traffic serves mainly slaughter hubs close to urban centres along the cattle corridor. Critically, analyses that target the complex livestock supply value chain offer a unique framework for understanding and quantifying risks for TADs such as Foot-and-Mouth disease in a land-locked country like Uganda. These findings can be used to inform the development of risk-based surveillance strategies and decision making on resource allocation. For instance, vaccine deployment, biosecurity enforcement and capacity building for stakeholders at the local community and across animal health services with the potential to limit the socio-economic impact of outbreaks, or indeed reduce their frequency.


Assuntos
Doenças dos Animais , Doenças dos Bovinos , Humanos , Bovinos , Animais , Estações do Ano , Uganda/epidemiologia , Doenças dos Animais/epidemiologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Gado , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle
3.
IEEE Trans Vis Comput Graph ; 29(1): 1255-1265, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173770

RESUMO

Computational modeling is a commonly used technology in many scientific disciplines and has played a noticeable role in combating the COVID-19 pandemic. Modeling scientists conduct sensitivity analysis frequently to observe and monitor the behavior of a model during its development and deployment. The traditional algorithmic ranking of sensitivity of different parameters usually does not provide modeling scientists with sufficient information to understand the interactions between different parameters and model outputs, while modeling scientists need to observe a large number of model runs in order to gain actionable information for parameter optimization. To address the above challenge, we developed and compared two visual analytics approaches, namely: algorithm-centric and visualization-assisted, and visualization-centric and algorithm-assisted. We evaluated the two approaches based on a structured analysis of different tasks in visual sensitivity analysis as well as the feedback of domain experts. While the work was carried out in the context of epidemiological modeling, the two approaches developed in this work are directly applicable to a variety of modeling processes featuring time series outputs, and can be extended to work with models with other types of outputs.


Assuntos
COVID-19 , Pandemias , Humanos , Gráficos por Computador , Simulação por Computador , Algoritmos
4.
Transbound Emerg Dis ; 69(6): 3198-3215, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36383164

RESUMO

Foot-and-mouth disease (FMD) is one of the most important transboundary animal diseases affecting livestock and wildlife species worldwide. Sustained viral circulation, as evidenced by serological surveys and the recurrence of outbreaks, suggests endemic transmission cycles in some parts of Africa, Asia and the Middle East. This is the result of a complex process in which multiple serotypes, multi-host interactions and numerous socio-epidemiological factors converge to facilitate disease introduction, survival and spread. Spatial and spatio-temporal analyses have been increasingly used to explore the burden of the disease by identifying high-risk areas, analysing temporal trends and exploring the factors that contribute to the outbreaks. We systematically retrieved spatial and spatial-temporal studies on FMD outbreaks to summarize variations on their methodological approaches and identify the epidemiological factors associated with the outbreaks in endemic contexts. Fifty-one studies were included in the final review. A high proportion of papers described and visualized the outbreaks (72.5%) and 49.0% used one or more approaches to study their spatial, temporal and spatio-temporal aggregation. The epidemiological aspects commonly linked to FMD risk are broadly categorizable into themes such as (a) animal demographics and interactions, (b) spatial accessibility, (c) trade, (d) socio-economic and (e) environmental factors. The consistency of these themes across studies underlines the different pathways in which the virus is sustained in endemic areas, with the potential to exploit them to design tailored evidence based-control programmes for the local needs. There was limited data linking the socio-economics of communities and modelled FMD outbreaks, leaving a gap in the current knowledge. A thorough analysis of FMD outbreaks requires a systemic view as multiple epidemiological factors contribute to viral circulation and may improve the accuracy of disease mapping. Future studies should explore the links between socio-economic and epidemiological factors as a foundation for translating the identified opportunities into interventions to improve the outcomes of FMD surveillance and control initiatives in endemic contexts.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Surtos de Doenças/veterinária , Animais Selvagens , Análise Espaço-Temporal , Doenças dos Bovinos/epidemiologia
5.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210300, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35965468

RESUMO

Modern epidemiological analyses to understand and combat the spread of disease depend critically on access to, and use of, data. Rapidly evolving data, such as data streams changing during a disease outbreak, are particularly challenging. Data management is further complicated by data being imprecisely identified when used. Public trust in policy decisions resulting from such analyses is easily damaged and is often low, with cynicism arising where claims of 'following the science' are made without accompanying evidence. Tracing the provenance of such decisions back through open software to primary data would clarify this evidence, enhancing the transparency of the decision-making process. Here, we demonstrate a Findable, Accessible, Interoperable and Reusable (FAIR) data pipeline. Although developed during the COVID-19 pandemic, it allows easy annotation of any data as they are consumed by analyses, or conversely traces the provenance of scientific outputs back through the analytical or modelling source code to primary data. Such a tool provides a mechanism for the public, and fellow scientists, to better assess scientific evidence by inspecting its provenance, while allowing scientists to support policymakers in openly justifying their decisions. We believe that such tools should be promoted for use across all areas of policy-facing research. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Assuntos
COVID-19 , Gerenciamento de Dados , Humanos , Pandemias , Software , Fluxo de Trabalho
6.
Epidemics ; 39: 100574, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35617882

RESUMO

Uncertainty quantification is a formal paradigm of statistical estimation that aims to account for all uncertainties inherent in the modelling process of real-world complex systems. The methods are directly applicable to stochastic models in epidemiology, however they have thus far not been widely used in this context. In this paper, we provide a tutorial on uncertainty quantification of stochastic epidemic models, aiming to facilitate the use of the uncertainty quantification paradigm for practitioners with other complex stochastic simulators of applied systems. We provide a formal workflow including the important decisions and considerations that need to be taken, and illustrate the methods over a simple stochastic epidemic model of UK SARS-CoV-2 transmission and patient outcome. We also present new approaches to visualisation of outputs from sensitivity analyses and uncertainty quantification more generally in high input and/or output dimensions.


Assuntos
COVID-19 , Epidemias , COVID-19/epidemiologia , Calibragem , Humanos , SARS-CoV-2 , Incerteza
7.
J R Soc Interface ; 19(188): 20220013, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259955

RESUMO

Pathogens such as African swine fever virus (ASFV) are an increasing threat to global livestock production with implications for economic well-being and food security. Quantification of epidemiological parameters, such as transmission rates and latent and infectious periods, is critical to inform efficient disease control. Parameter estimation for livestock disease systems is often reliant upon transmission experiments, which provide valuable insights in the epidemiology of disease but which may also be unrepresentative of at-risk populations and incur economic and animal welfare costs. Routinely collected mortality data are a potential source of readily available and representative information regarding disease transmission early in outbreaks. We develop methodology to conduct exact Bayesian parameter inference from mortality data using reversible jump Markov chain Monte Carlo incorporating multiple routes of transmission (e.g. within-farm secondary and background transmission from external sources). We use this methodology to infer epidemiological parameters for ASFV using data from outbreaks on nine farms in the Russian Federation. This approach improves inference on transmission rates in comparison with previous methods based on approximate Bayesian computation, allows better estimation of time of introduction and could readily be applied to other outbreaks or pathogens.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Animais , Teorema de Bayes , Surtos de Doenças/veterinária , Suínos , Doenças dos Suínos/epidemiologia
8.
BMJ Open ; 12(9): e058457, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36691163

RESUMO

INTRODUCTION: At the peak of Uganda's first wave of SARS-CoV-2 in May 2020, one in three COVID-19 cases was linked to the haulage sector. This triggered a mandatory requirement for a negative PCR test result at all ports of entry and exit, resulting in significant delays as haulage drivers had to wait for 24-48 hours for results, which severely crippled the regional supply chain.To support public health and economic recovery, we aim to develop and test a mobile phone-based digital contact tracing (DCT) tool that both augments conventional contact tracing and also increases its speed and efficiency. METHODS AND ANALYSIS: To test the DCT tool, we will use a stratified sample of haulage driver journeys, stratified by route type (regional and local journeys).We will include at least 65% of the haulage driver journeys ~83 200 on the network through Uganda. This allows us to capture variations in user demographics and socioeconomic characteristics that could influence the use and adoption of the DCT tool. The developed DCT tool will include a mobile application and web interface to collate and intelligently process data, whose output will support decision-making, resource allocation and feed mathematical models that predict epidemic waves.The main expected result will be an open source-tested DCT tool tailored to haulage use in developing countries.This study will inform the safe deployment of DCT technologies needed for combatting pandemics in low-income countries. ETHICS AND DISSEMINATION: This work has received ethics approval from the School of Public Health Higher Degrees, Research and Ethics Committee at Makerere University and The Uganda National Council for Science and Technology. This work will be disseminated through peer-reviewed publications, our websites https://project-thea.org/ and Github for the open source code https://github.com/project-thea/.


Assuntos
COVID-19 , Aplicativos Móveis , Humanos , Busca de Comunicante/métodos , SARS-CoV-2 , Saúde Pública , Uganda
9.
Front Vet Sci ; 8: 755833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778436

RESUMO

Integrons are genetic elements that capture and express antimicrobial resistance genes within arrays, facilitating horizontal spread of multiple drug resistance in a range of bacterial species. The aim of this study was to estimate prevalence for class 1, 2, and 3 integrons in Scottish cattle and examine whether spatial, seasonal or herd management factors influenced integron herd status. We used fecal samples collected from 108 Scottish cattle herds in a national, cross-sectional survey between 2014 and 2015, and screened fecal DNA extracts by multiplex PCR for the integrase genes intI1, intI2, and intI3. Herd-level prevalence was estimated [95% confidence interval (CI)] for intI1 as 76.9% (67.8-84.0%) and intI2 as 82.4% (73.9-88.6%). We did not detect intI3 in any of the herd samples tested. A regional effect was observed for intI1, highest in the North East (OR 11.5, 95% CI: 1.0-130.9, P = 0.05) and South East (OR 8.7, 95% CI: 1.1-20.9, P = 0.04), lowest in the Highlands. A generalized linear mixed model was used to test for potential associations between herd status and cattle management, soil type and regional livestock density variables. Within the final multivariable model, factors associated with herd positivity for intI1 included spring season of the year (OR 6.3, 95% CI: 1.1-36.4, P = 0.04) and watering cattle from a natural spring source (OR 4.4, 95% CI: 1.3-14.8, P = 0.017), and cattle being housed at the time of sampling for intI2 (OR 75.0, 95% CI: 10.4-540.5, P < 0.001). This study provides baseline estimates for integron prevalence in Scottish cattle and identifies factors that may be associated with carriage that warrant future investigation.

10.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33712425

RESUMO

Cattle are a reservoir for Shiga toxin-producing Escherichia coli (STEC), zoonotic pathogens that cause serious clinical disease. Scotland has a higher incidence of STEC infection in the human population than the European average. The aim of this study was to investigate the prevalence and epidemiology of non-O157 serogroups O26, O103, O111, and O145 and Shiga toxin gene carriage in Scottish cattle. Fecal samples (n = 2783) were collected from 110 herds in 2014 and 2015 and screened by real-time PCR. Herd-level prevalence (95% confidence interval [CI]) for O103, O26, and O145 was estimated as 0.71 (0.62, 0.79), 0.43 (0.34, 0.52), and 0.23 (0.16, 0.32), respectively. Only two herds were positive for O111. Shiga toxin prevalence was high in both herds and pats, particularly for stx2 (herd level: 0.99; 95% CI: 0.94, 1.0). O26 bacterial strains were isolated from 36 herds on culture. Fifteen herds yielded O26 stx-positive isolates that additionally harbored the intimin gene; six of these herds shed highly pathogenic stx2-positive strains. Multiple serogroups were detected in herds and pats, with only 25 herds negative for all serogroups. Despite overlap in detection, regional and seasonal effects were observed. Higher herd prevalence for O26, O103, and stx1 occurred in the South West, and this region was significant for stx2 at the pat level (P = 0.015). Significant seasonal variation was observed for O145 prevalence, with the highest prevalence in autumn (P = 0.032). Negative herds were associated with Central Scotland and winter. Herds positive for all serogroups were associated with autumn and larger herd size and were not housed at sampling.IMPORTANCE Cattle are reservoirs for Shiga toxin-producing Escherichia coli (STEC), bacteria shed in animal feces. Humans are infected through consumption of contaminated food or water and by direct contact, resulting in serious disease and kidney failure in the most vulnerable. The contribution of non-O157 serogroups to STEC illness was underestimated for many years due to the lack of specific tests. Recently, non-O157 human cases have increased, with O26 STEC of particular note. It is therefore vital to investigate the level and composition of non-O157 in the cattle reservoir and to compare them historically and by the clinical situation. In this study, we found cattle prevalence high for toxin, as well as for O103 and O26 serogroups. Pathogenic O26 STEC were isolated from 14% of study herds, with toxin subtypes similar to those seen in Scottish clinical cases. This study highlights the current risk to public health from non-O157 STEC in Scottish cattle.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Genes Bacterianos , Toxina Shiga/genética , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Fezes/microbiologia , Prevalência , Escócia/epidemiologia , Sorogrupo
12.
Transbound Emerg Dis ; 67(5): 2146-2162, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32267629

RESUMO

An African horse sickness (AHS) outbreak occurred in March and April 2016 in the controlled area of South Africa. This extended an existing trade suspension of live equids from South Africa to the European Union. In the post-outbreak period ongoing passive and active surveillance, the latter in the form of monthly sentinel surveillance and a stand-alone freedom from disease survey in March 2017, took place. We describe a stochastic scenario tree analysis of these surveillance components for 24 months, starting July 2016, in three distinct geographic areas of the controlled area. Given that AHS was not detected, the probability of being free from AHS was between 98.3% and 99.8% assuming that, if it were present, it would have a prevalence of at least one infected animal in 1% of herds. This high level of freedom probability had been attained in all three areas within the first 9 months of the 2-year period. The primary driver of surveillance outcomes was the passive surveillance component. Active surveillance components contributed minimally (<0.2%) to the final probability of freedom. Sensitivity analysis showed that the probability of infected horses showing clinical signs was an important parameter influencing the system surveillance sensitivity. The monthly probability of disease introduction needed to be increased to 20% and greater to decrease the overall probability of freedom to below 90%. Current global standards require a 2-year post-incursion period of AHS freedom before re-evaluation of free zone status. Our findings show that the length of this period could be decreased if adequately sensitive surveillance is performed. In order to comply with international standards, active surveillance will remain a component of AHS surveillance in South Africa. Passive surveillance, however, can provide substantial evidence supporting AHS freedom status declarations, and further investment in this surveillance activity would be beneficial.

13.
Front Vet Sci ; 7: 36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32118060

RESUMO

Game theory examines strategic decision-making in situations of conflict, cooperation, and coordination. It has become an established tool in economics, psychology and political science, and more recently has been applied to disease control. Used to examine vaccination uptake in human medicine, game theory shows that when vaccination is voluntary some individuals will choose to "free-ride" on the protection provided by others, resulting in insufficient coverage for control of a vaccine-preventable disease. Here, we use game theory to examine farmer uptake of a new diagnostic ELISA test for sheep scab-a highly infectious disease with an estimated cost exceeding £8M per year to the UK industry. The stochastic game models decisions made by neighboring farmers when deciding whether to adopt the newly available test, which can detect subclinical infestation. A key element of the stochastic game framework is that it allows multiple states. Depending on infestation status and test adoption decisions in the previous year, a farm may be at high, medium or low risk of infestation this year-a status which influences the decision the farmer makes and the farmer payoffs. Ultimately, each farmer's decision depends on the costs of using the diagnostic test vs. the benefits of enhanced disease control, which may only accrue in the longer term. The extent to which a farmer values short-term over long-term benefits reflects external factors such as inflation or individual characteristics such as patience. Our results show that when using realistic parameters and with a test cost around 50% more than the current clinical diagnosis, the test will be adopted in the high-risk state, but not in the low-risk state. For the medium risk state, test adoption will depend on whether the farmer takes a long-term or short-term view. We show that these outcomes are relatively robust to change in test costs and, moreover, that whilst the farmers adopting the test would not expect to see large gains in profitability, substantial reduction in sheep scab (and associated welfare implications) could be achieved in a cost-neutral way to the industry.

14.
Transbound Emerg Dis ; 67(3): 1231-1246, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31880086

RESUMO

When assessing the role of live animal trade networks in the spread of infectious diseases in livestock, attention has focused mainly on direct movements of animals between premises, whereas the role of haulage vehicles used during transport, an indirect route for disease transmission, has largely been ignored. Here, we have assessed the impact of sharing haulage vehicles from livestock transport service providers on the connectivity between farms as well as on the spread of swine infectious diseases in Great Britain (GB). Using all pig movement records between April 2012 and March 2014 in GB, we built a series of directed and weighted static multiplex networks consisting of two layers of identical nodes, where nodes (farms) are linked either by (a) the direct movement of pigs and (b) the shared use of haulage vehicles. The haulage contact definition integrates the date of the move and the duration Δ s that lorries are left contaminated by pathogens, hence accounting for the temporal aspect of contact events. For increasing Δ s , descriptive network analyses were performed to assess the role of haulage on network connectivity. We then explored how viruses may spread throughout the GB pig sector by computing the reproduction number R . Our results showed that sharing haulage vehicles increases the number of contacts between farms by >50% and represents an important driver of disease transmission. In particular, sharing haulage vehicles, even if Δ s  < 1 day, will limit the benefit of the standstill regulation, increase the number of premises that could be infected in an outbreak, and more easily raise R above 1. This work confirms that sharing haulage vehicles has significant potential for spreading infectious diseases within the pig sector. The cleansing and disinfection process of haulage vehicles is therefore a critical control point for disease transmission risk mitigation.


Assuntos
Doenças Transmissíveis/veterinária , Surtos de Doenças/veterinária , Doenças dos Suínos/transmissão , Meios de Transporte , Criação de Animais Domésticos/métodos , Animais , Controle de Doenças Transmissíveis , Doenças Transmissíveis/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Reino Unido
15.
PLoS One ; 14(10): e0222366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31671099

RESUMO

African horse sickness (AHS) is a disease of equids that results in a non-tariff barrier to the trade of live equids from affected countries. AHS is endemic in South Africa except for a controlled area in the Western Cape Province (WCP) where sporadic outbreaks have occurred in the past 2 decades. There is potential that the presence of zebra populations, thought to be the natural reservoir hosts for AHS, in the WCP could maintain AHS virus circulation in the area and act as a year-round source of infection for horses. However, it remains unclear whether the epidemiology or the ecological conditions present in the WCP would enable persistent circulation of AHS in the local zebra populations. Here we developed a hybrid deterministic-stochastic vector-host compartmental model of AHS transmission in plains zebra (Equus quagga), where host populations are age- and sex-structured and for which population and AHS transmission dynamics are modulated by rainfall and temperature conditions. Using this model, we showed that populations of plains zebra present in the WCP are not sufficiently large for AHS introduction events to become endemic and that coastal populations of zebra need to be >2500 individuals for AHS to persist >2 years, even if zebras are infectious for more than 50 days. AHS cannot become endemic in the coastal population of the WCP unless the zebra population involves at least 50,000 individuals. Finally, inland populations of plains zebra in the WCP may represent a risk for AHS to persist but would require populations of at least 500 zebras or show unrealistic duration of infectiousness for AHS introduction events to become endemic. Our results provide evidence that the risk of AHS persistence from a single introduction event in a given plains zebra population in the WCP is extremely low and it is unlikely to represent a long-term source of infection for local horses.


Assuntos
Vírus da Doença Equina Africana/patogenicidade , Doença Equina Africana/virologia , Equidae/virologia , Doença Equina Africana/patologia , Doença Equina Africana/transmissão , Animais , Surtos de Doenças , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Cavalos/virologia , Insetos Vetores/virologia , África do Sul
16.
Front Vet Sci ; 6: 190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275949

RESUMO

Traditionally, cost-benefit analyses (CBAs) focus on the direct costs of animal disease, including animal mortality, morbidity, and associated response costs. However, such approaches often fail to capture the wider, dynamic market impacts that could arise. The duration of these market dislocations could last well after an initial disease outbreak. More generally, current approaches also muddle definitions of indirect costs, confusing debate on the scope of the totalities of disease-induced economic impacts. The aim of this work was to clarify definitions of indirect costs in the context of animal diseases and to apply this definition to a time series methodological framework to estimate the indirect costs of animal disease control strategies, using a foot and mouth disease (FMD) outbreak in Scotland as a case study. Time series analysis is an econometric method for analyzing statistical relationships between data series over time, thus allowing insights into how market dynamics may change following a disease outbreak. First an epidemiological model simulated FMD disease dynamics based on alternative control strategies. Output from the epidemiological model was used to quantify direct costs and applied in a multivariate vector error correction model to quantify the indirect costs of alternative vaccine stock strategies as a result of FMD. Indirect costs were defined as the economic losses incurred in markets after disease freedom is declared. As such, our definition of indirect costs captures the knock-on price and quantity effects in six agricultural markets after a disease outbreak. Our results suggest that controlling a FMD epidemic with vaccination is less costly in direct and indirect costs relative to a no vaccination (i.e., "cull only") strategy, when considering large FMD outbreaks in Scotland. Our research clarifies and provides a framework for estimating indirect costs, which is applicable to both exotic and endemic diseases. Standard accounting CBAs only capture activities in isolation, ignore linkages across sectors, and do not consider price effects. However, our framework not only delineates when indirect costs start, but also captures the wider knock-on price effects between sectors, which are often omitted from CBAs but are necessary to support decision-making in animal disease prevention and control strategies.

17.
Front Vet Sci ; 6: 101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024939

RESUMO

Live animal markets are common hotspots for the dispersal of multiple infectious diseases in various production systems globally. In Cameroon livestock trade occurs predominantly via a system of livestock markets. Improving the understanding of the risks associated with livestock trade systems and markets is, therefore, key to design targeted and evidence-based interventions. In the current study, official transaction records for a 12-month period were collected from 62 livestock markets across Central and Southern Cameroon, in combination with a questionnaire-based survey with the livestock markets stakeholders. The available information collected at these markets was used to characterize their structural and functional organization. Based on trade volume, cattle price and the intensity of stakeholder attendance, four main classes of livestock markets were identified. Despite an evident hierarchical structure of the system, a relatively limited pool of infectious diseases was consistently reported as predominant across market classes, highlighting homogeneous disease risks along the livestock supply chain. Conversely, the variable livestock management practices reported (e.g., traded species, husbandry practices, and transhumance habits) highlighted diverse potential risks for disease dissemination among market classes. Making use of readily available commercial information at livestock markets, this study describes a rapid approach for market characterization and classification. Simultaneously, this study identifies primary diseases and management practices at risk and provides the opportunity to inform evidence-based and strategic communication, surveillance and control approaches aiming at mitigating these risks for diseases dissemination through the livestock supply chain in Cameroon.

18.
BMC Vet Res ; 14(1): 214, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970084

RESUMO

BACKGROUND: In sub-Saharan Africa, livestock transhumance represents a key adaptation strategy to environmental variability. In this context, seasonal livestock transhumance also plays an important role in driving the dynamics of multiple livestock infectious diseases. In Cameroon, cattle transhumance is a common practice during the dry season across all the main livestock production zones. Currently, the little recorded information of the migratory routes, grazing locations and nomadic herding practices adopted by pastoralists, limits our understanding of pastoral cattle movements in the country. GPS-tracking technology in combination with a questionnaire based-survey were used to study a limited pool of 10 cattle herds from the Adamawa Region of Cameroon during their seasonal migration, between October 2014 and May 2015. The data were used to analyse the trajectories and movement patterns, and to characterize the key animal health aspects related to this seasonal migration in Cameroon. RESULTS: Several administrative Regions of the country were visited by the transhumant herds over more than 6 months. Herds travelled between 53 and 170 km to their transhumance grazing areas adopting different strategies, some travelling directly to their destination areas while others having multiple resting periods and grazing areas. Despite their limitations, these are among the first detailed data available on transhumance in Cameroon. These reports highlight key livestock health issues and the potential for multiple types of interactions between transhumant herds and other domestic and wild animals, as well as with the formal livestock trading system. CONCLUSION: Overall, these findings provide useful insights into transhumance patterns and into the related animal health implications recorded in Cameroon. This knowledge could better inform evidence-based approaches for designing infectious diseases surveillance and control measures and help driving further studies to improve the understanding of risks associated with livestock movements in the region.


Assuntos
Criação de Animais Domésticos/métodos , Bovinos , Migração Animal , Animais , Camarões , Doenças dos Bovinos/etiologia , Doenças dos Bovinos/prevenção & controle , Sistemas de Informação Geográfica , Estações do Ano
19.
Front Vet Sci ; 5: 47, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594161

RESUMO

Predictive models have been used extensively to assess the likely effectiveness of vaccination policies as part of control measures in the event of a foot and mouth disease (FMD) outbreak. However, the availability of vaccine stocks and the impact of vaccine availability on disease control strategies represent a key uncertainty when assessing potential control strategies. Using an epidemiological, spatially explicit, simulation model in combination with a direct cost calculator, we assessed how vaccine availability constraints may affect the economic benefit of a "vaccination-to-live" strategy during a FMD outbreak in Scotland, when implemented alongside culling of infected premises and dangerous contacts. We investigated the impact of vaccine stock size and restocking delays on epidemiological and economic outcomes. We also assessed delays in the initial decision to vaccinate, maximum daily vaccination capacity, and vaccine efficacy. For scenarios with conditions conducive to large outbreaks, all vaccination strategies perform better than the strategy where only culling is implemented. A stock of 200,000 doses, enough to vaccinate 12% of the Scottish cattle population, would be sufficient to maximize the relative benefits of vaccination, both epidemiologically and economically. However, this generates a wider variation in economic cost than if vaccination is not implemented, making outcomes harder to predict. The probability of direct costs exceeding £500 million is reduced when vaccination is used and is steadily reduced further as the size of initial vaccine stock increases. If only a suboptimal quantity of vaccine doses is initially available (100,000 doses), restocking delays of more than 2 weeks rapidly increase the cost of controlling outbreaks. Impacts of low vaccine availability or restocking delays are particularly aggravated by delays in the initial decision to vaccinate, or low vaccine efficacy. Our findings confirm that implementing an emergency vaccination-to-live strategy in addition to the conventional stamping out strategy is economically beneficial in scenarios with conditions conducive to large FMD outbreaks in Scotland. However, the size of the initial vaccine stock available at the start of the outbreak and the interplay with other factors, such as vaccine efficacy and delays in restocking or implementing vaccination, should be considered in making decisions about optimal control strategies for FMD outbreaks.

20.
Front Vet Sci ; 4: 16, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293559

RESUMO

Livestock epidemics have the potential to give rise to significant economic, welfare, and social costs. Incursions of emerging and re-emerging pathogens may lead to small and repeated outbreaks. Analysis of the resulting data is statistically challenging but can inform disease preparedness reducing potential future losses. We present a framework for spatial risk assessment of disease incursions based on data from small localized historic outbreaks. We focus on between-farm spread of livestock pathogens and illustrate our methods by application to data on the small outbreak of Classical Swine Fever (CSF) that occurred in 2000 in East Anglia, UK. We apply models based on continuous time semi-Markov processes, using data-augmentation Markov Chain Monte Carlo techniques within a Bayesian framework to infer disease dynamics and detection from incompletely observed outbreaks. The spatial transmission kernel describing pathogen spread between farms, and the distribution of times between infection and detection, is estimated alongside unobserved exposure times. Our results demonstrate inference is reliable even for relatively small outbreaks when the data-generating model is known. However, associated risk assessments depend strongly on the form of the fitted transmission kernel. Therefore, for real applications, methods are needed to select the most appropriate model in light of the data. We assess standard Deviance Information Criteria (DIC) model selection tools and recently introduced latent residual methods of model assessment, in selecting the functional form of the spatial transmission kernel. These methods are applied to the CSF data, and tested in simulated scenarios which represent field data, but assume the data generation mechanism is known. Analysis of simulated scenarios shows that latent residual methods enable reliable selection of the transmission kernel even for small outbreaks whereas the DIC is less reliable. Moreover, compared with DIC, model choice based on latent residual assessment correlated better with predicted risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...