Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752221

RESUMO

Fusarium causes significant post-harvest quality losses and mycotoxin contamination in stored wheat but the colonisation dynamics of the grain and how this may be affected by the initial inoculum position in the grain mass is poorly understood. This study examined the 3D growth kinetics and mycotoxin production (deoxynivalenol and zearalenone) by F. graminearum during hyphal colonisation from different initial inoculum positions in wheat microcosms (top-centre, bottom-centre, and bottom-side) maintained at two water activities (aw; 0.95 and 0.97). Clear jars were used to visually follow the colonisation dynamics. Fungal respiration and associated dry matter loss (DML) and ergosterol were also quantified. Colonisation dynamics was shown to be affected by the inoculation position. At the end of the colonisation process, fungal respiration and DML were driven by the inoculation position, and the latter also by the prevailing aw. Fungal biomass (ergosterol) was mainly affected by the aw. The initial inoculum position did not affect the relative mycotoxin production. There was a positive correlation between respiration and ergosterol, and between mycotoxin production and colonisation indicators. We suggest that spatially explicit predictive models can be used to better understand the colonisation patterns and mycotoxin contamination of stored cereal commodities and to aid more effective post-harvest management.

2.
Front Microbiol ; 9: 1583, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108552

RESUMO

There is still no satisfactory understanding of the factors that enable soil microbial populations to be as highly biodiverse as they are. The present article explores in silico the hypothesis that the heterogeneous distribution of soil organic matter, in addition to the spatial connectivity of the soil moisture, might account for the observed microbial biodiversity in soils. A multi-species, individual-based, pore-scale model is developed and parameterized with data from 3 Arthrobacter sp. strains, known to be, respectively, competitive, versatile, and poorly competitive. In the simulations, bacteria of each strain are distributed in a 3D computed tomography (CT) image of a real soil and three water saturation levels (100, 50, and 25%) and spatial heterogeneity levels (high, intermediate, and low) in the distribution of the soil organic matter are considered. High and intermediate heterogeneity levels assume, respectively, an amount of particulate organic matter (POM) distributed in a single (high heterogeneity) or in four (intermediate heterogeneity) randomly placed fragments. POM is hydrolyzed at a constant rate following a first-order kinetic, and continuously delivers dissolved organic carbon (DOC) into the liquid phase, where it is then taken up by bacteria. The low heterogeneity level assumes that the food source is available from the start as DOC. Unlike the relative abundances of the 3 strains, the total bacterial biomass and respiration are similar under the high and intermediate resource heterogeneity schemes. The key result of the simulations is that spatial heterogeneity in the distribution of organic matter influences the maintenance of bacterial biodiversity. The least competing strain, which does not reach noticeable growth for the low and intermediate spatial heterogeneities of resource distribution, can grow appreciably and even become more abundant than the other strains in the absence of direct competition, if the placement of the resource is favorable. For geodesic distances exceeding 5 mm, microbial colonies cannot grow. These conclusions are conditioned by assumptions made in the model, yet they suggest that microscale factors need to be considered to better understand the root causes of the high biodiversity of soils.

3.
Front Microbiol ; 9: 33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467721

RESUMO

The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.

4.
Front Microbiol ; 8: 2628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354112

RESUMO

Nowadays control of the growth of Saccharomyces to obtain biomass or cellular wall components is crucial for specific industrial applications. The general aim of this contribution is to deal with experimental data obtained from yeast cells and from yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM-Saccha. Populations of S. cerevisiae growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied. A set of digital images was taken during the population growth, and a protocol for the treatment and analyses of the images obtained was established. The piecewise linear model of Buchanan was adjusted to the temporal evolutions of the yeast populations to determine the kinetic parameters and changes of growth phases. In parallel, for all the yeast cells analyzed, values of direct morphological parameters, such as area, perimeter, major diameter, minor diameter, and derived ones, such as circularity and elongation, were obtained. Graphical and numerical methods from descriptive statistics were applied to these data to characterize the growth phases and the budding state of the yeast cells in both experimental conditions, and inferential statistical methods were used to compare the diverse groups of data achieved. Oxidative metabolism of yeast in a medium with oxygen available and low initial sugar concentration can be taken into account in order to obtain a greater number of cells or larger cells. Morphological parameters were analyzed statistically to identify which were the most useful for the discrimination of the different states, according to budding and/or growth phase, in aerobic and microaerophilic conditions. The use of the experimental data for subsequent modeling work was then discussed and compared to simulation results generated with INDISIM-Saccha, which allowed us to advance in the development of this yeast model, and illustrated the utility of data at different levels of observation and the needs and logic behind the development of a microbial individual-based model.

5.
Arch Microbiol ; 197(8): 991-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206245

RESUMO

Saccharomyces cerevisiae is industrially the most important yeast, and its growth in different concentrations of oxygen can be used to improve various application processes. The aims of this work were to study in aerobic and microaerophilic growth conditions the cell size and tendency of morphological changes in S. cerevisiae in different stages of growth and to assess the effect of the two growth conditions in the differentiation of quiescent and non-quiescent subpopulations in the stationary phase. Dissolved oxygen levels in the culture medium for aerobic and microaerophilic conditions were 6.6 and 5.2 mg L(-1), respectively. In both growth conditions, similar viable cell populations were obtained, although in aerobic conditions the stationary phase was reached and the quiescent and non-quiescent subpopulations were also differentiated. The microaerophilic growth produced a significant reduction in the specific growth rate and consequently also in glucose and oxygen consumption. The most notable changes in cellular size and morphology occurred with the depletion of glucose and oxygen. The concentration of dissolved oxygen in the culture medium significantly modulated the growth kinetics of S. cerevisiae and their development and differentiation to quiescent cells. This could justify the need to readjust small variations in oxygen levels during yeast cultures in biotechnological processes.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Aerobiose , Meios de Cultura/química , Glucose/metabolismo , Cinética , Oxigênio/química , Consumo de Oxigênio , Saccharomyces cerevisiae/citologia
6.
Eur Phys J C Part Fields ; 74(12): 3174, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25983637

RESUMO

We present state-of-the-art cross section predictions for the production of supersymmetric squarks and gluinos at the upcoming LHC run with a centre-of-mass energy of [Formula: see text] and [Formula: see text] TeV, and at potential future [Formula: see text] colliders operating at [Formula: see text] and [Formula: see text] TeV. The results are based on calculations which include the resummation of soft-gluon emission at next-to-leading logarithmic accuracy, matched to next-to-leading order supersymmetric QCD corrections. Furthermore, we provide an estimate of the theoretical uncertainty due to the variation of the renormalisation and factorisation scales and the parton distribution functions.

7.
Food Microbiol ; 28(4): 810-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21511143

RESUMO

The performance of fermentation processes is greatly influenced by the size and quality of inocula. The characterization of the replicative age is decided by the number of birth scars each yeast exhibits on its cellular membrane. Yeast ageing and inoculum size are factors that affect industrial fermentation, particularly those processes in which the yeast cells are reused such as the production of beer. This process reuses yeast cropped at the end of one fermentation in the following one, in a process called "serial repitching". The aim of this study was to explore the effects of inoculum size and ageing on the first stages of the dynamics of yeast population growth. However, only Individual-based Models (IbMs) allow the study of small, well-characterized, microbial inocula. We used INDISIM-YEAST, based on the generic IbM simulator INDISIM, to carry out these studies. Several simulations were performed to analyze the effect of the inoculum size and genealogical age of the cells that made it up on the lag phase, first division time and specific growth rate. The shortest lag phase and time to the first division were obtained with largest inocula and with the youngest inoculated parent cells.


Assuntos
Cerveja/microbiologia , Microbiologia Industrial/métodos , Modelos Biológicos , Leveduras/crescimento & desenvolvimento , Simulação por Computador , Fermentação/fisiologia , Leveduras/metabolismo
8.
FEMS Yeast Res ; 11(1): 18-28, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21040453

RESUMO

Data from electric particle analysis, light diffraction and flow cytometry analysis provide information on changes in cell morphology. Here, we report analyses of Saccharomyces cerevisiae populations growing in a batch culture using these techniques. The size distributions were determined by electric particle analysis and by light diffraction in order to compare their outcomes. Flow cytometry parameters forward (related to cell size) and side (related to cell granularity) scatter were also determined to complement this information. These distributions of yeast properties were analysed statistically and by a complexity index. The cell size of Saccharomyces at the lag phase was smaller than that at the beginning of the exponential phase, whereas during the stationary phase, the cell size converged with the values observed during the lag phase. These experimental techniques, when used together, allow us to distinguish among and characterize the cell size, cell granularity and the structure of the yeast population through the three growth phases. Flow cytometry patterns are better than light diffraction and electric particle analysis in showing the existence of subpopulations during the different phases, especially during the stationary phase. The use of a complexity index in this context helped to differentiate these phases and confirmed the yeast cell heterogeneity.


Assuntos
Tamanho da Partícula , Saccharomyces cerevisiae/citologia , Vinho/microbiologia , Citometria de Fluxo , Saccharomyces cerevisiae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...