Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548515

RESUMO

Environmental DNA (eDNA) metabarcoding has gained growing attention as a strategy for monitoring biodiversity in ecology. However, taxa identifications produced through metabarcoding require sophisticated processing of high-throughput sequencing data from taxonomically informative DNA barcodes. Various sets of universal and taxon-specific primers have been developed, extending the usability of metabarcoding across archaea, bacteria and eukaryotes. Accordingly, a multitude of metabarcoding data analysis tools and pipelines have also been developed. Often, several developed workflows are designed to process the same amplicon sequencing data, making it somewhat puzzling to choose one among the plethora of existing pipelines. However, each pipeline has its own specific philosophy, strengths and limitations, which should be considered depending on the aims of any specific study, as well as the bioinformatics expertise of the user. In this review, we outline the input data requirements, supported operating systems and particular attributes of thirty-two amplicon processing pipelines with the goal of helping users to select a pipeline for their metabarcoding projects.

2.
Sci Rep ; 13(1): 7978, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198223

RESUMO

Wildfire is a natural disturbance in boreal forest systems that has been predicted to increase in frequency, intensity, and extent due to climate change. Most studies tend to assess the recovery of one component of the community at a time but here we use DNA metabarcoding to simultaneously monitor soil bacteria, fungi, and arthropods along an 85-year chronosequence following wildfire in jack pine-dominated ecosites. We describe soil successional and community assembly processes to better inform sustainable forest management practices. Soil taxa showed different recovery trajectories following wildfire. Bacteria shared a large core community across stand development stages (~ 95-97% of their unique sequences) and appeared to recover relatively quickly by crown closure. By comparison fungi and arthropods shared smaller core communities (64-77% and 68-69%, respectively) and each stage appeared to support unique biodiversity. We show the importance of maintaining a mosaic ecosystem that represents each stand development stage to maintain the full suite of biodiversity in soils following wildfire, especially for fungi and arthropods. These results will provide a useful baseline for comparison when assessing the effects of human disturbance such as harvest or for assessing the effects of more frequent wildfire events due to climate change.


Assuntos
Taiga , Incêndios Florestais , Humanos , Ecossistema , Solo , Biodiversidade , Florestas , Fungos/genética , Bactérias/genética
3.
PLoS One ; 17(9): e0274260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174014

RESUMO

Multi-marker metabarcoding is increasingly being used to generate biodiversity information across different domains of life from microbes to fungi to animals such as for molecular ecology and biomonitoring applications in different sectors from academic research to regulatory agencies and industry. Current popular bioinformatic pipelines support microbial and fungal marker analysis, while ad hoc methods are often used to process animal metabarcode markers from the same study. MetaWorks provides a harmonized processing environment, pipeline, and taxonomic assignment approach for demultiplexed Illumina reads for all biota using a wide range of metabarcoding markers such as 16S, ITS, and COI. A Conda environment is provided to quickly gather most of the programs and dependencies for the pipeline. Several workflows are provided such as: taxonomically assigning exact sequence variants, provides an option to generate operational taxonomic units, and facilitates single-read processing. Pipelines are automated using Snakemake to minimize user intervention and facilitate scalability. All pipelines use the RDP classifier to provide taxonomic assignments with confidence measures. We extend the functionality of the RDP classifier for taxonomically assigning 16S (bacteria), ITS (fungi), and 28S (fungi), to also support COI (eukaryotes), rbcL (eukaryotes, land plants, diatoms), 12S (fish, vertebrates), 18S (eukaryotes, diatoms) and ITS (fungi, plants). MetaWorks properly handles ITS by trimming flanking conserved rRNA gene regions as well as protein coding genes by providing two options for removing obvious pseudogenes. MetaWorks can be downloaded from https://github.com/terrimporter/MetaWorks and quickstart instructions, pipeline details, and a tutorial for new users can be found at https://terrimporter.github.io/MetaWorksSite.


Assuntos
Biodiversidade , Biologia Computacional , Animais , Biomarcadores , Ecologia , Eucariotos
4.
Sci Rep ; 12(1): 10556, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732669

RESUMO

There is increasing need for biodiversity monitoring, especially in places where potential anthropogenic disturbance may significantly impact ecosystem health. We employed a combination of traditional morphological and bulk macroinvertebrate metabarcoding analyses to benthic samples collected from Toronto Harbour (Ontario, Canada) to compare taxonomic and functional diversity of macroinvertebrates and their responses to environmental gradients. At the species rank, sites assessed using COI metabarcoding showed more variation than sites assessed using morphological methods. Depending on the assessment method, we detected gradients in magnesium (morphological taxa), ammonia (morphological taxa, COI sequence variants), pH (18S sequence variants) as well as gradients in contaminants such as metals (COI & 18S sequence variants) and organochlorines (COI sequence variants). Observed responses to contaminants such as aromatic hydrocarbons and metals align with known patchy distributions in harbour sediments. We determined that the morphological approach may limit the detection of macroinvertebrate responses to lake environmental conditions due to the effort needed to obtain fine level taxonomic assignments necessary to investigate responses. DNA metabarcoding, however, need not be limited to macroinvertebrates, can be automated, and taxonomic assignments are associated with a certain level of accuracy from sequence variants to named taxonomic groups. The capacity to detect change using a scalable approach such as metabarcoding is critical for addressing challenges associated with biodiversity monitoring and ecological investigations.


Assuntos
Código de Barras de DNA Taxonômico , Ecossistema , Biodiversidade , Biomarcadores , DNA/genética , Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental , Ontário
5.
BMC Bioinformatics ; 23(1): 110, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361114

RESUMO

BACKGROUND: Identification of biomarkers, which are measurable characteristics of biological datasets, can be challenging. Although amplicon sequence variants (ASVs) can be considered potential biomarkers, identifying important ASVs in high-throughput sequencing datasets is challenging. Noise, algorithmic failures to account for specific distributional properties, and feature interactions can complicate the discovery of ASV biomarkers. In addition, these issues can impact the replicability of various models and elevate false-discovery rates. Contemporary machine learning approaches can be leveraged to address these issues. Ensembles of decision trees are particularly effective at classifying the types of data commonly generated in high-throughput sequencing (HTS) studies due to their robustness when the number of features in the training data is orders of magnitude larger than the number of samples. In addition, when combined with appropriate model introspection algorithms, machine learning algorithms can also be used to discover and select potential biomarkers. However, the construction of these models could introduce various biases which potentially obfuscate feature discovery. RESULTS: We developed a decision tree ensemble, LANDMark, which uses oblique and non-linear cuts at each node. In synthetic and toy tests LANDMark consistently ranked as the best classifier and often outperformed the Random Forest classifier. When trained on the full metabarcoding dataset obtained from Canada's Wood Buffalo National Park, LANDMark was able to create highly predictive models and achieved an overall balanced accuracy score of 0.96 ± 0.06. The use of recursive feature elimination did not impact LANDMark's generalization performance and, when trained on data from the BE amplicon, it was able to outperform the Linear Support Vector Machine, Logistic Regression models, and Stochastic Gradient Descent models (p ≤ 0.05). Finally, LANDMark distinguishes itself due to its ability to learn smoother non-linear decision boundaries. CONCLUSIONS: Our work introduces LANDMark, a meta-classifier which blends the characteristics of several machine learning models into a decision tree and ensemble learning framework. To our knowledge, this is the first study to apply this type of ensemble approach to amplicon sequencing data and we have shown that analyzing these datasets using LANDMark can produce highly predictive and consistent models.


Assuntos
Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala , Biomarcadores , Aprendizado de Máquina , Máquina de Vetores de Suporte
6.
Sci Rep ; 12(1): 4171, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264620

RESUMO

There is interest in utilizing wood ash as an amendment in forestry operations as a mechanism to return nutrients to soils that are removed during harvesting, with the added benefit of diverting this bioenergy waste material from landfill sites. Existing studies have not arrived at a consensus on what the effects of wood ash amendments are on soil biota. We collected forest soil samples from studies in managed forests across Canada that were amended with wood ash to evaluate the effects on arthropod, bacterial and fungal communities using metabarcoding of F230, 16S, 18S and ITS2 sequences as well as enzyme analyses to assess its effects on soil biotic function. Ash amendment did not result in consistent effects across sites, and those effects that were detected were small. Overall, this study suggests that ash amendment applied to managed forest systems in amounts (up to 20 Mg ha-1) applied across the 8 study sties had little to no detectable effects on soil biotic community structure or function. When effects were detected, they were small, and site-specific. These non-results support the application of wood ash to harvested forest sites to replace macronutrients (e.g., calcium) removed by logging operations, thereby diverting it from landfill sites, and potentially increasing stand productivity.


Assuntos
Poluentes do Solo , Solo , Biota , Agricultura Florestal , Florestas , Solo/química , Poluentes do Solo/análise
7.
PLoS One ; 15(11): e0242143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206700

RESUMO

Biomonitoring is an essential tool for assessing ecological conditions and informing management strategies. The application of DNA metabarcoding and high throughput sequencing has improved data quantity and resolution for biomonitoring of taxa such as macroinvertebrates, yet, there remains the need to optimise these methods for other taxonomic groups. Diatoms have a longstanding history in freshwater biomonitoring as bioindicators of water quality status. However, multi-substrate periphyton collection, a common diatom sampling practice, is time-consuming and thus costly in terms of labour. This study examined whether the benthic kick-net technique used for macroinvertebrate biomonitoring could be applied to bulk-sample diatoms for metabarcoding. To test this approach, we collected samples using both conventional multi-substrate microhabitat periphyton collections and bulk-tissue kick-net methodologies in parallel from replicated sites with different habitat status (good/fair). We found there was no significant difference in community assemblages between conventional periphyton collection and kick-net methodologies or site status, but there was significant difference between diatom communities depending on site (P = 0.042). These results show the diatom taxonomic coverage achieved through DNA metabarcoding of kick-net is suitable for ecological biomonitoring applications. The shift to a more robust sampling approach and capturing diatoms as well as macroinvertebrates in a single sampling event has the potential to significantly improve efficiency of biomonitoring programmes that currently only use the kick-net technique to sample macroinvertebrates.


Assuntos
Código de Barras de DNA Taxonômico , Diatomáceas/genética , Monitoramento Ambiental/métodos , Perifíton/genética , Animais , Biodiversidade , Biofilmes , Monitoramento Biológico , Biologia Computacional , DNA/análise , Diatomáceas/fisiologia , Ecossistema , Água Doce , Sequenciamento de Nucleotídeos em Larga Escala , Invertebrados , Perifíton/fisiologia , Rios , Qualidade da Água
8.
Sci Rep ; 10(1): 18429, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116157

RESUMO

Tropical forests are fundamental ecosystems, essential for providing terrestrial primary productivity, global nutrient cycling, and biodiversity. Despite their importance, tropical forests are currently threatened by deforestation and associated activities. Moreover, tropical regions are now mostly represented by secondary forest regrowth, with half of the remaining tropical forests as secondary forest. Soil invertebrates are an important component to the functioning and biodiversity of these soil ecosystems. However, it remains unclear how these past land-use activities and subsequent secondary forest developments have altered the soil invertebrate communities and any potential ecological consequences associated with this. DNA metabarcoding offers an effective approach to rapidly monitor soil invertebrate communities under different land-use practices and within secondary forests. In this study, we used DNA metabarcoding to detect community-based patterns of soil invertebrate composition across a primary forest, a 23-year-old secondary forest, and a 33-year-old secondary forest and the associated soil environmental drivers of the soil invertebrate community structure in the Maquenque National Wildlife Refuge of Costa Rica (MNWR). We also used a species contribution analysis (SIMPER) to determine which soil invertebrate groups may be an indication of these soils reaching a pre-disturbed state such as a primary forest. We found that the soil invertebrate community composition at class, order, family, and ESV level were mostly significantly different across that habitats. We also found that the primary forest had a greater richness of soil invertebrates compared to the 23-year-old and 33-year-old secondary forest. Moreover, a redundancy analysis indicated that soil moisture influenced soil invertebrate community structure and explained up to 22% of the total variation observed in the community composition across the habitats; whereas soil invertebrate richness was structured by soil microbial biomass carbon (C) (Cmic) and explained up to 52% of the invertebrate richness across the primary and secondary forests. Lastly, the SIMPER analysis revealed that Naididae, Entomobryidae, and Elateridae could be important indicators of soil and forest recuperation in the MNWR. This study adds to the increasing evidence that soil invertebrates are intimately linked with the soil microbial biomass carbon (Cmic) and that even after 33 years of natural regrowth of a forest, these land use activities can still have persisting effects on the overall composition and richness of the soil invertebrate communities.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Florestas , Invertebrados , Solo , Animais , Costa Rica , DNA Ambiental , Clima Tropical
9.
Proc Natl Acad Sci U S A ; 117(15): 8539-8545, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32217735

RESUMO

The complexity and natural variability of ecosystems present a challenge for reliable detection of change due to anthropogenic influences. This issue is exacerbated by necessary trade-offs that reduce the quality and resolution of survey data for assessments at large scales. The Peace-Athabasca Delta (PAD) is a large inland wetland complex in northern Alberta, Canada. Despite its geographic isolation, the PAD is threatened by encroachment of oil sands mining in the Athabasca watershed and hydroelectric dams in the Peace watershed. Methods capable of reliably detecting changes in ecosystem health are needed to evaluate and manage risks. Between 2011 and 2016, aquatic macroinvertebrates were sampled across a gradient of wetland flood frequency, applying both microscope-based morphological identification and DNA metabarcoding. By using multispecies occupancy models, we demonstrate that DNA metabarcoding detected a much broader range of taxa and more taxa per sample compared to traditional morphological identification and was essential to identifying significant responses to flood and thermal regimes. We show that family-level occupancy masks high variation among genera and quantify the bias of barcoding primers on the probability of detection in a natural community. Interestingly, patterns of community assembly were nearly random, suggesting a strong role of stochasticity in the dynamics of the metacommunity. This variability seriously compromises effective monitoring at local scales but also reflects resilience to hydrological and thermal variability. Nevertheless, simulations showed the greater efficiency of metabarcoding, particularly at a finer taxonomic resolution, provided the statistical power needed to detect change at the landscape scale.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA/análise , Ecossistema , Monitoramento Ambiental/métodos , Invertebrados/fisiologia , Áreas Alagadas , Animais , Meio Selvagem
10.
Sci Total Environ ; 710: 135906, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31926407

RESUMO

Transformative advances in metagenomics are providing an unprecedented ability to characterize the enormous diversity of microorganisms and invertebrates sustaining soil health and water quality. These advances are enabling a better recognition of the ecological linkages between soil and water, and the biodiversity exchanges between these two reservoirs. They are also providing new perspectives for understanding microorganisms and invertebrates as part of interacting communities (i.e. microbiomes and zoobiomes), and considering plants, animals, and humans as holobionts comprised of their own cells as well as diverse microorganisms and invertebrates often acquired from soil and water. The Government of Canada's Genomics Research and Development Initiative (GRDI) launched the Ecobiomics Project to coordinate metagenomics capacity building across federal departments, and to apply metagenomics to better characterize microbial and invertebrate biodiversity for advancing environmental assessment, monitoring, and remediation activities. The Project has adopted standard methods for soil, water, and invertebrate sampling, collection and provenance of metadata, and nucleic acid extraction. High-throughput sequencing is located at a centralized sequencing facility. A centralized Bioinformatics Platform was established to enable a novel government-wide approach to harmonize metagenomics data collection, storage and bioinformatics analyses. Sixteen research projects were initiated under Soil Microbiome, Aquatic Microbiome, and Invertebrate Zoobiome Themes. Genomic observatories were established at long-term environmental monitoring sites for providing more comprehensive biodiversity reference points to assess environmental change.


Assuntos
Metagenômica , Solo , Animais , Biodiversidade , Canadá , Água Doce , Humanos
11.
PLoS One ; 14(12): e0225409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31830042

RESUMO

Biomonitoring programs have evolved beyond the sole use of morphological identification to determine the composition of invertebrate species assemblages in an array of ecosystems. The application of DNA metabarcoding in freshwater systems for assessing benthic invertebrate communities is now being employed to generate biological information for environmental monitoring and assessment. A possible shift from the extraction of DNA from net-collected bulk benthic samples to its extraction directly from water samples for metabarcoding has generated considerable interest based on the assumption that taxon detectability is comparable when using either method. To test this, we studied paired water and benthos samples from a taxon-rich wetland complex, to investigate differences in the detection of arthropod taxa from each sample type. We demonstrate that metabarcoding of DNA extracted directly from water samples is a poor surrogate for DNA extracted from bulk benthic samples, focusing on key bioindicator groups. Our results continue to support the use of bulk benthic samples as a basis for metabarcoding-based biomonitoring, with nearly three times greater total richness in benthic samples compared to water samples. We also demonstrated that few arthropod taxa are shared between collection methods, with a notable lack of key bioindicator EPTO taxa in the water samples. Although species coverage in water could likely be improved through increased sample replication and/or increased sequencing depth, benthic samples remain the most representative, cost-effective method of generating aquatic compositional information via metabarcoding.


Assuntos
Biodiversidade , DNA , Ecossistema , Monitoramento Ambiental , Invertebrados/classificação , Animais , Monitoramento Biológico , Código de Barras de DNA Taxonômico , Água Doce , Invertebrados/genética , Água
12.
Sci Rep ; 9(1): 18218, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796780

RESUMO

Terrestrial arthropod fauna have been suggested as a key indicator of ecological integrity in forest systems. Because phenotypic identification is expert-limited, a shift towards DNA metabarcoding could improve scalability and democratize the use of forest floor arthropods for biomonitoring applications. The objective of this study was to establish the level of field sampling and DNA extraction replication needed for arthropod biodiversity assessments from soil. Processing 15 individually collected soil samples recovered significantly higher median richness (488-614 sequence variants) than pooling the same number of samples (165-191 sequence variants) prior to DNA extraction, and we found no significant richness differences when using 1 or 3 pooled DNA extractions. Beta diversity was robust to changes in methodological regimes. Though our ability to identify taxa to species rank was limited, we were able to use arthropod COI metabarcodes from forest soil to assess richness, distinguish among sites, and recover site indicators based on unnamed exact sequence variants. Our results highlight the need to continue DNA barcoding local taxa during COI metabarcoding studies to help build reference databases. All together, these sampling considerations support the use of soil arthropod COI metabarcoding as a scalable method for biomonitoring.


Assuntos
Artrópodes/genética , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Variação Genética/genética , Animais , DNA/genética , DNA/isolamento & purificação , Florestas , Análise de Sequência de DNA/métodos , Solo
13.
PLoS One ; 14(9): e0220953, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513585

RESUMO

Mixed community or environmental DNA marker gene sequencing has become a commonly used technique for biodiversity analyses in freshwater systems. Many cytochrome c oxidase subunit I (COI) primer sets are now available for such work. The purpose of this study is to test whether COI primer choice affects the recovery of arthropod richness, beta diversity, and recovery of target assemblages in the benthos kick-net samples typically used in freshwater biomonitoring. We examine six commonly used COI primer sets on samples collected from six freshwater sites. Biodiversity analyses show that richness is sensitive to primer choice and the combined use of multiple COI amplicons recovers higher richness. Thus, to recover maximum richness, multiple primer sets should be used with COI metabarcoding. In ordination analyses based on community dissimilarity, samples consistently cluster by site regardless of amplicon choice or PCR replicate. Thus, for broadscale community analyses, overall beta diversity patterns are robust to COI marker choice. Recovery of traditional freshwater bioindicator assemblages such as Ephemeroptera, Trichoptera, Plectoptera, and Chironomidae as well as Arthropoda site indicators were differentially detected by each amplicon tested. This work will help future biodiversity and biomonitoring studies develop not just standardized, but optimized workflows that either maximize taxon-detection or the selection of amplicons for water quality or Arthropoda site indicators.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Água Doce , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase
14.
PLoS One ; 13(9): e0200177, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192752

RESUMO

The increasing popularity of cytochrome c oxidase subunit 1 (COI) DNA metabarcoding warrants a careful look at the underlying reference databases used to make high-throughput taxonomic assignments. The objectives of this study are to document trends and assess the future usability of COI records for metabarcode identification. The number of COI records deposited to the NCBI nucleotide database has increased by a geometric average of 51% per year, from 8,137 records deposited in 2003 to a cumulative total of ~ 2.5 million by the end of 2017. About half of these records are fully identified to the species rank, 92% are at least 500 bp in length, 74% have a country annotation, and 51% have latitude-longitude annotations. To ensure the future usability of COI records in GenBank we suggest: 1) Improving the geographic representation of COI records, 2) Improving the cross-referencing of COI records in the Barcode of Life Data System and GenBank to facilitate consolidation and incorporation into existing bioinformatic pipelines, 3) Adherence to the minimum information about a marker gene sequence guidelines, and 4) Integrating metabarcodes from eDNA and mixed community studies with existing reference sequences. The growth of COI reference records over the past 15 years has been substantial and is likely to be a resource across many fields for years to come.


Assuntos
Bases de Dados de Ácidos Nucleicos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Animais , Código de Barras de DNA Taxonômico , Humanos
15.
Sci Rep ; 8(1): 4578, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531276

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Sci Rep ; 8(1): 4226, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523803

RESUMO

We introduce a method for assigning names to CO1 metabarcode sequences with confidence scores in a rapid, high-throughput manner. We compiled nearly 1 million CO1 barcode sequences appropriate for classifying arthropods and chordates. Compared to our previous Insecta classifier, the current classifier has more than three times the taxonomic coverage, including outgroups, and is based on almost five times as many reference sequences. Unlike other popular rDNA metabarcoding markers, we show that classification performance is similar across the length of the CO1 barcoding region. We show that the RDP classifier can make taxonomic assignments about 19 times faster than the popular top BLAST hit method and reduce the false positive rate from nearly 100% to 34%. This is especially important in large-scale biodiversity and biomonitoring studies where datasets can become very large and the taxonomic assignment problem is not trivial. We also show that reference databases are becoming more representative of current species diversity but that gaps still exist. We suggest that it would benefit the field as a whole if all investigators involved in metabarocoding studies, through collaborations with taxonomic experts, also planned to barcode representatives of their local biota as a part of their projects.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Automação , Biodiversidade , Monitoramento Ambiental
17.
Mol Ecol ; 27(2): 313-338, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29292539

RESUMO

The purpose of this review is to present the most common and emerging DNA-based methods used to generate data for biodiversity and biomonitoring studies. As environmental assessment and monitoring programmes may require biodiversity information at multiple levels, we pay particular attention to the DNA metabarcoding method and discuss a number of bioinformatic tools and considerations for producing DNA-based indicators using operational taxonomic units (OTUs), taxa at a variety of ranks and community composition. By developing the capacity to harness the advantages provided by the newest technologies, investigators can "scale up" by increasing the number of samples and replicates processed, the frequency of sampling over time and space, and even the depth of sampling such as by sequencing more reads per sample or more markers per sample. The ability to scale up is made possible by the reduced hands-on time and cost per sample provided by the newest kits, platforms and software tools. Results gleaned from broad-scale monitoring will provide opportunities to address key scientific questions linked to biodiversity and its dynamics across time and space as well as being more relevant for policymakers, enabling science-based decision-making, and provide a greater socio-economic impact. As genomic approaches are continually evolving, we provide this guide to methods used in biodiversity genomics.


Assuntos
Biodiversidade , DNA/genética , Monitoramento Ambiental , Genômica , Biologia Computacional/métodos , Código de Barras de DNA Taxonômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala
18.
Sci Rep ; 7(1): 12777, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986575

RESUMO

Cost-effective, ecologically relevant, sensitive, and standardized indicators are requisites of biomonitoring. DNA metabarcoding of macroinvertebrate communities is a potentially transformative biomonitoring technique that can reduce cost and time constraints while providing information-rich, high resolution taxonomic data for the assessment of watershed condition. Here, we assess the utility of DNA metabarcoding to provide aquatic indicator data for evaluation of forested watershed condition across Canadian eastern boreal watersheds, subject to natural variation and low-intensity harvest management. We do this by comparing the similarity of DNA metabarcoding and morphologically derived macroinvertebrate metrics (i.e. richness, % Ephemeroptera, Plecoptera and Trichoptera, % chironomid), and the ability of DNA metabarcoding and morphological metrics to detect key gradients in stream condition linked to forested watershed features. Our results show consistency between methods, where common DNA metabarcoding and morphological macroinvertebrate metrics are positively correlated and indicate the same key gradients in stream condition (i.e. dissolved oxygen, and dissolved organic carbon, total nitrogen and conductivity) linked to watershed size and shifts in forest composition across watersheds. Our study demonstrates the potential usefulness of macroinvertebrate DNA metabarcoding to future application in broad-scale biomonitoring of watershed condition across environmental gradients.


Assuntos
Código de Barras de DNA Taxonômico , Invertebrados/anatomia & histologia , Invertebrados/classificação , Rios , Animais , Geografia , Ontário
19.
PLoS One ; 11(1): e0142759, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731732

RESUMO

Though the use of metagenomic methods to sample below-ground fungal communities is common, the use of similar methods to sample plants from their underground structures is not. In this study we use high throughput sequencing of the ribulose-bisphosphate carboxylase large subunit (rbcL) plastid marker to study the plant community as well as the internal transcribed spacer and large subunit ribosomal DNA (rDNA) markers to investigate the fungal community from two wetland sites. Observed community richness and composition varied by marker. The two rDNA markers detected complementary sets of fungal taxa and total fungal composition clustered according to primer rather than by site. The composition of the most abundant plants, however, clustered according to sites as expected. We suggest that future studies consider using multiple genetic markers, ideally generated from different primer sets, to detect a more taxonomically diverse suite of taxa compared with what can be detected by any single marker alone. Conclusions drawn from the presence of even the most frequently observed taxa should be made with caution without corroborating lines of evidence.


Assuntos
Biota , Proteínas de Cloroplastos/genética , Código de Barras de DNA Taxonômico , DNA Fúngico/análise , DNA de Plantas/análise , DNA Espaçador Ribossômico/análise , DNA Ribossômico/análise , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Proteínas de Plantas/genética , Plastídeos/química , Ribulose-Bifosfato Carboxilase/genética , Microbiologia do Solo , Solo/química , Áreas Alagadas , Alberta , Fungos/classificação , Fungos/genética , Marcadores Genéticos , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
20.
Sci Rep ; 5: 9687, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25884109

RESUMO

Genetic information is a valuable component of biosystematics, especially specimen identification through the use of species-specific DNA barcodes. Although many genomics applications have shifted to High-Throughput Sequencing (HTS) or Next-Generation Sequencing (NGS) technologies, sample identification (e.g., via DNA barcoding) is still most often done with Sanger sequencing. Here, we present a scalable double dual-indexing approach using an Illumina Miseq platform to sequence DNA barcode markers. We achieved 97.3% success by using half of an Illumina Miseq flowcell to obtain 658 base pairs of the cytochrome c oxidase I DNA barcode in 1,010 specimens from eleven orders of arthropods. Our approach recovers a greater proportion of DNA barcode sequences from individuals than does conventional Sanger sequencing, while at the same time reducing both per specimen costs and labor time by nearly 80%. In addition, the use of HTS allows the recovery of multiple sequences per specimen, for deeper analysis of genetic variation in target gene regions.


Assuntos
DNA/análise , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Animais , Artrópodes/genética , Artrópodes/metabolismo , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...