Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancer Cell ; 36(1): 100-114.e25, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31257072

RESUMO

Type I protein arginine methyltransferases (PRMTs) catalyze asymmetric dimethylation of arginines on proteins. Type I PRMTs and their substrates have been implicated in human cancers, suggesting inhibition of type I PRMTs may offer a therapeutic approach for oncology. The current report describes GSK3368715 (EPZ019997), a potent, reversible type I PRMT inhibitor with anti-tumor effects in human cancer models. Inhibition of PRMT5, the predominant type II PRMT, produces synergistic cancer cell growth inhibition when combined with GSK3368715. Interestingly, deletion of the methylthioadenosine phosphorylase gene (MTAP) results in accumulation of the metabolite 2-methylthioadenosine, an endogenous inhibitor of PRMT5, and correlates with sensitivity to GSK3368715 in cell lines. These data provide rationale to explore MTAP status as a biomarker strategy for patient selection.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Purina-Núcleosídeo Fosforilase/deficiência , Processamento Alternativo , Antineoplásicos/química , Biomarcadores , Linhagem Celular Tumoral , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Humanos , Metilação , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Proteína-Arginina N-Metiltransferases/química , Especificidade por Substrato
3.
PLoS One ; 13(6): e0197372, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856759

RESUMO

A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed. In this paper we illustrate these general themes by providing detailed studies of small molecule inhibitors of the enzymatic activity of two members of the SMYD branch of the protein lysine methyltransferases, SMYD2 and SMYD3. We show that tool compounds as well as CRISPR/Cas9 fail to reproduce many of the cell proliferation findings associated with SMYD2 and SMYD3 inhibition previously obtained with RNAi based approaches and with early stage chemical probes.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinogênese/genética , Histona-Lisina N-Metiltransferase/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Sistemas CRISPR-Cas , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/química , Humanos , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Interferência de RNA , Bibliotecas de Moléculas Pequenas/farmacologia
4.
ACS Med Chem Lett ; 7(2): 162-6, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26985292

RESUMO

The recent publication of a potent and selective inhibitor of protein methyltransferase 5 (PRMT5) provides the scientific community with in vivo-active tool compound EPZ015666 (GSK3235025) to probe the underlying pharmacology of this key enzyme. Herein, we report the design and optimization strategies employed on an initial hit compound with poor in vitro clearance to yield in vivo tool compound EPZ015666 and an additional potent in vitro tool molecule EPZ015866 (GSK3203591).

5.
Biochemistry ; 55(11): 1635-44, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26848779

RESUMO

CARM1 is a type I arginine methyltransferase involved in the regulation of transcription, pre-mRNA splicing, cell cycle progression, and the DNA damage response. CARM1 overexpression has been implicated in breast, prostate, and liver cancers and therefore is an attractive target for cancer therapy. To date, little about the kinetic properties of CARM1 is known. In this study, substrate specificity and the kinetic mechanism of the human enzyme were determined. Substrate specificity was examined by testing CARM1 activity with several histone H3-based peptides in a radiometric assay. Comparison of kcat/KM values reveals that methylation of H3R17 is preferred over that of H3R26. These effects are KM-driven as kcat values remain relatively constant for the peptides tested. Shortening the peptide at the C-terminus by five amino acid residues greatly reduced binding affinity, indicating distal residues may contribute to substrate binding. CARM1 appears to bind monomethylated peptides with an affinity similar to that of unmethylated peptides. Monitoring of the CARM1-dependent production of monomethylated and dimethylated peptides over time by self-assembled monolayer and matrix-assisted laser desorption ionization mass spectrometry revealed that methylation by CARM1 is distributive. Additionally, dead-end and product inhibition studies suggest CARM1 conforms to a random sequential kinetic mechanism. By defining the kinetic properties and mechanism of CARM1, these studies may aid in the development of small molecule CARM1 inhibitors.


Assuntos
Histonas/química , Modelos Químicos , Peptídeos/química , Proteína-Arginina N-Metiltransferases/química , Linhagem Celular , Histonas/metabolismo , Humanos , Cinética , Metilação , Peptídeos/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Especificidade por Substrato/fisiologia
6.
Biochemistry ; 55(11): 1645-51, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26813693

RESUMO

The protein methyltransferase (PMT) SETDB1 is a strong candidate oncogene in melanoma and lung carcinomas. SETDB1 methylates lysine 9 of histone 3 (H3K9), utilizing S-adenosylmethionine (SAM) as the methyl donor and its catalytic activity, has been reported to be regulated by a partner protein ATF7IP. Here, we examine the contribution of ATF7IP to the in vitro activity and substrate specificity of SETDB1. SETDB1 and ATF7IP were co-expressed and 1:1 stoichiometric complexes were purified for comparison against SETDB1 enzyme alone. We employed both radiometric flashplate-based and SAMDI mass spectrometry assays to follow methylation on histone H3 15-mer peptides, where lysine 9 was either unmodified, monomethylated, or dimethylated. Results show that SETDB1 and the SETDB1:ATF7IP complex efficiently catalyze both monomethylation and dimethylation of H3K9 peptide substrates. The activity of the binary complex was 4-fold lower than SETDB1 alone. This difference was due to a decrease in the value of kcat as the substrate KM values were comparable between SETDB1 and the SETDB1:ATF7IP complex. H3K9 methylation by SETDB1 occurred in a distributive manner, and this too was unaffected by the presence of ATF7IP. This finding is important as H3K9 can be methylated by HMTs other than SETDB1 and a distributive mechanism would allow for interplay between multiple HMTs on H3K9. Our results indicate that ATF7IP does not directly modulate SETDB1 catalytic activity, suggesting alternate roles, such as affecting cellular localization or mediating interaction with additional binding partners.


Assuntos
Histonas/química , Complexos Multiproteicos/química , Proteínas Metiltransferases/química , S-Adenosilmetionina/química , Fatores de Transcrição/química , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Espectrometria de Massas , Metilação , Complexos Multiproteicos/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas Repressoras , S-Adenosilmetionina/metabolismo , Especificidade por Substrato/fisiologia , Fatores de Transcrição/metabolismo
7.
J Med Chem ; 59(4): 1556-64, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26769278

RESUMO

Posttranslational methylation of histones plays a critical role in gene regulation. Misregulation of histone methylation can lead to oncogenic transformation. Enhancer of Zeste homologue 2 (EZH2) methylates histone 3 at lysine 27 (H3K27) and abnormal methylation of this site is found in many cancers. Tazemetostat, an EHZ2 inhibitor in clinical development, has shown activity in both preclinical models of cancer as well as in patients with lymphoma or INI1-deficient solid tumors. Herein we report the structure-activity relationships from identification of an initial hit in a high-throughput screen through selection of tazemetostat for clinical development. The importance of several methyl groups to the potency of the inhibitors is highlighted as well as the importance of balancing pharmacokinetic properties with potency.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histonas/metabolismo , Metilação/efeitos dos fármacos , Complexo Repressor Polycomb 2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Descoberta de Drogas , Proteína Potenciadora do Homólogo 2 de Zeste , Inibidores Enzimáticos/farmacocinética , Humanos , Camundongos , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacocinética , Relação Estrutura-Atividade
8.
ACS Med Chem Lett ; 6(6): 655-9, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26101569

RESUMO

A novel aryl pyrazole series of arginine methyltransferase inhibitors has been identified. Synthesis of analogues within this series yielded the first potent, selective, small molecule PRMT6 inhibitor tool compound, EPZ020411. PRMT6 overexpression has been reported in several cancer types suggesting that inhibition of PRMT6 activity may have therapeutic utility. Identification of EPZ020411 provides the field with the first small molecule tool compound for target validation studies. EPZ020411 shows good bioavailability following subcutaneous dosing in rats making it a suitable tool for in vivo studies.

9.
ACS Med Chem Lett ; 6(5): 491-5, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005520

RESUMO

Inhibitors of the protein methyltransferase Enhancer of Zeste Homolog 2 (EZH2) may have significant therapeutic potential for the treatment of B cell lymphomas and other cancer indications. The ability of the scientific community to explore fully the spectrum of EZH2-associated pathobiology has been hampered by the lack of in vivo-active tool compounds for this enzyme. Here we report the discovery and characterization of EPZ011989, a potent, selective, orally bioavailable inhibitor of EZH2 with useful pharmacokinetic properties. EPZ011989 demonstrates significant tumor growth inhibition in a mouse xenograft model of human B cell lymphoma. Hence, this compound represents a powerful tool for the expanded exploration of EZH2 activity in biology.

10.
PLoS One ; 9(12): e111840, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493630

RESUMO

Patients with non-Hodgkin lymphoma (NHL) are treated today with a cocktail of drugs referred to as CHOP (Cyclophosphamide, Hydroxyldaunorubicin, Oncovin, and Prednisone). Subsets of patients with NHL of germinal center origin bear oncogenic mutations in the EZH2 histone methyltransferase. Clinical testing of the EZH2 inhibitor EPZ-6438 has recently begun in patients. We report here that combining EPZ-6438 with CHOP in preclinical cell culture and mouse models results in dramatic synergy for cell killing in EZH2 mutant germinal center NHL cells. Surprisingly, we observe that much of this synergy is due to Prednisolone - a glucocorticoid receptor agonist (GRag) component of CHOP. Dramatic synergy was observed when EPZ-6438 is combined with Prednisolone alone, and a similar effect was observed with Dexamethasone, another GRag. Remarkably, the anti-proliferative effect of the EPZ-6438+GRag combination extends beyond EZH2 mutant-bearing cells to more generally impact germinal center NHL. These preclinical data reveal an unanticipated biological intersection between GR-mediated gene regulation and EZH2-mediated chromatin remodeling. The data also suggest the possibility of a significant and practical benefit of combining EZH2 inhibitors and GRag that warrants further investigation in a clinical setting.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Linfoma não Hodgkin/tratamento farmacológico , Piridonas/farmacologia , Animais , Compostos de Bifenilo , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Dexametasona/farmacologia , Doxorrubicina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Linfoma não Hodgkin/metabolismo , Camundongos SCID , Morfolinas , Transplante de Neoplasias , Prednisolona/farmacologia , Prednisona/farmacologia , Distribuição Aleatória , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Vincristina/farmacologia
11.
Mol Cancer Ther ; 13(4): 842-54, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24563539

RESUMO

Mutations within the catalytic domain of the histone methyltransferase EZH2 have been identified in subsets of patients with non-Hodgkin lymphoma (NHL). These genetic alterations are hypothesized to confer an oncogenic dependency on EZH2 enzymatic activity in these cancers. We have previously reported the discovery of EPZ005678 and EPZ-6438, potent and selective S-adenosyl-methionine-competitive small molecule inhibitors of EZH2. Although both compounds are similar with respect to their mechanism of action and selectivity, EPZ-6438 possesses superior potency and drug-like properties, including good oral bioavailability in animals. Here, we characterize the activity of EPZ-6438 in preclinical models of NHL. EPZ-6438 selectively inhibits intracellular lysine 27 of histone H3 (H3K27) methylation in a concentration- and time-dependent manner in both EZH2 wild-type and mutant lymphoma cells. Inhibition of H3K27 trimethylation (H3K27Me3) leads to selective cell killing of human lymphoma cell lines bearing EZH2 catalytic domain point mutations. Treatment of EZH2-mutant NHL xenograft-bearing mice with EPZ-6438 causes dose-dependent tumor growth inhibition, including complete and sustained tumor regressions with correlative diminution of H3K27Me3 levels in tumors and selected normal tissues. Mice dosed orally with EPZ-6438 for 28 days remained tumor free for up to 63 days after stopping compound treatment in two EZH2-mutant xenograft models. These data confirm the dependency of EZH2-mutant NHL on EZH2 activity and portend the utility of EPZ-6438 as a potential treatment for these genetically defined cancers.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linfoma não Hodgkin/tratamento farmacológico , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/genética , Piridonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Compostos de Bifenilo , Domínio Catalítico/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Linfoma não Hodgkin/patologia , Masculino , Camundongos , Camundongos SCID , Dados de Sequência Molecular , Morfolinas , Mutação Puntual , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Proc Natl Acad Sci U S A ; 110(19): 7922-7, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23620515

RESUMO

Inactivation of the switch/sucrose nonfermentable complex component SMARCB1 is extremely prevalent in pediatric malignant rhabdoid tumors (MRTs) or atypical teratoid rhabdoid tumors. This alteration is hypothesized to confer oncogenic dependency on EZH2 in these cancers. We report the discovery of a potent, selective, and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity, (N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-(ethyl(tetrahydro-2H-pyran-4-yl)amino)-4-methyl-4'-(morpholinomethyl)-[1,1'-biphenyl]-3-carboxamide). The compound induces apoptosis and differentiation specifically in SMARCB1-deleted MRT cells. Treatment of xenograft-bearing mice with (N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-(ethyl(tetrahydro-2H-pyran-4-yl)amino)-4-methyl-4'-(morpholinomethyl)-[1,1'-biphenyl]-3-carboxamide) leads to dose-dependent regression of MRTs with correlative diminution of intratumoral trimethylation levels of lysine 27 on histone H3, and prevention of tumor regrowth after dosing cessation. These data demonstrate the dependency of SMARCB1 mutant MRTs on EZH2 enzymatic activity and portend the utility of EZH2-targeted drugs for the treatment of these genetically defined cancers.


Assuntos
Apoptose , Neoplasias/terapia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Tumor Rabdoide/enzimologia , Tumor Rabdoide/genética , Animais , Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Perfilação da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Piridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...