Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806469

RESUMO

Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men. In the present review, we focus on the effects of microgravity and radiation on the female reproductive system, particularly gynecological cancer. The aim is to provide a summary of the research that has been carried out related to the risk of gynecological cancer, highlighting what further studies are needed to pave the way for safer exploration class missions, as well as postflight screening and management of women astronauts following long-duration spaceflight.


Assuntos
Ginecologia , Neoplasias Induzidas por Radiação , Voo Espacial , Ausência de Peso , Astronautas , Feminino , Humanos , Masculino , Ausência de Peso/efeitos adversos
2.
Nanomedicine (Lond) ; 6(5): 879-98, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21793678

RESUMO

Silver nanoparticles (Ag NPs) are becoming increasingly prevalent in consumer products as antibacterial agents. The increased use of Ag NP-enhanced products may lead to an increase in toxic levels of environmental silver, but regulatory control over the use or disposal of such products is lagging due to insufficient assessment on the toxicology of Ag NPs and their rate of release into the environment. In this article we discuss recent research on the transport, activity and fate of Ag NPs at the cellular and organismic level, in conjunction with traditional and recently established methods of nanoparticle characterization. We include several proposed mechanisms of cytotoxicity based on such studies, as well as new opportunities for investigating the uptake and fate of Ag NPs in living systems.


Assuntos
Nanopartículas/análise , Nanopartículas/toxicidade , Prata/análise , Prata/toxicidade , Animais , Monitoramento Ambiental/métodos , Humanos , Microscopia/métodos
3.
Appl Opt ; 48(29): 5528-36, 2009 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-19823237

RESUMO

We report the design, development, and implementation of an improved instrumentation approach for frequency-domain fluorescence lifetime (FDFL) optrodic sensing without a concurrent reference LED. FDFL traditionally uses a reference LED, at approximately the same wavelength as the sensor fluorophore emission, to measure phase shifts associated with changes in the fluorescence lifetime of fluorophore. For this work we used an oxygen optrode to design, develop, and test the reference-LED-free FDFL approach. Electronics and optics were optimized, and key system parameters, such as inherent system phase shifts, were determined to insure best performance. In our tests with the oxygen optrode, we observed that several key performance characteristics were improved by the implementation of the reference-LED-free instrumentation platform. This system can potentially be adapted to other analyte-selective fluorophores, which will enable scientists and researchers to expand the application of optrodic sensors as basic research tools in biology, medicine, and agriculture.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Iluminação/instrumentação , Espectrometria de Fluorescência/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade
4.
Expert Rev Proteomics ; 4(4): 553-63, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17705712

RESUMO

This paper presents a review of microtechnologies relevant to applications in cellular physiology, including biochips, electrochemical sensors and optrodic sensing techniques. Microelectrodes have been the main tools for measuring cellular electrophysiology, oxygen, nitric oxide, neurotransmitters, pH and various ions. Optical fiber sensing methods, such as indicator-based optrodes, with fluorescence lifetime measurement, are now emerging as viable alternatives to electroanalytical chemistry. These new optrode techniques are possible because of recent advances in the optoelectronics industry and are comparably easier to miniaturize, have faster response times, do not consume the analyte and have lower operational costs. This review serves as a summary and predicts future trends for both electrochemical and optical luminescence lifetime sensing as components in lab-on-a-chip devices for physiological sensing.


Assuntos
Técnicas Biossensoriais , Membrana Celular/metabolismo , Eletrodos , Fluorescência , Concentração de Íons de Hidrogênio , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...