Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370737

RESUMO

Protein S (PS), the critical plasma cofactor for the anticoagulants tissue factor (TF) pathway inhibitor (TFPI) and activated protein C (APC), circulates in two functionally distinct pools: free (anticoagulant) or bound to complement component 4b-binding protein (C4BP) (anti-inflammatory). Acquired free PS deficiency is detected in several viral infections, but its cause is unclear. Here, we identified a shear-dependent interaction between PS and von Willebrand Factor (VWF) by mass spectrometry. Consistently, plasma PS and VWF comigrated in both native and agarose gel electrophoresis. The PS/VWF interaction was blocked by TFPI but not APC, suggesting an interaction with the C-terminal sex hormone binding globulin (SHBG) region of PS. Microfluidic systems, mimicking arterial laminar flow or disrupted turbulent flow, demonstrated that PS stably binds VWF as VWF unfolds under turbulent flow. PS/VWF complexes also localized to platelet thrombi under laminar arterial flow. In thrombin generation-based assays, shearing plasma decreased PS activity, an effect not seen in the absence of VWF. Finally, free PS deficiency in COVID-19 patients, measured using an antibody that binds near the C4BP binding site in SHBG, correlated with changes in VWF, but not C4BP, and with thrombin generation. Our data suggest that PS binds to a shear-exposed site on VWF, thus sequestering free PS and decreasing its anticoagulant activity, which would account for the increased thrombin generation potential. As many viral infections present with free PS deficiency, elevated circulating VWF, and increased vascular shear, we propose that the PS/VWF interaction reported here is a likely contributor to virus-associated thrombotic risk.

2.
Platelets ; 34(1): 2264978, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933490

RESUMO

Platelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients. Statistical analysis reveals that the α-granule/mitochondrion-to-plateletvolume ratio is significantly greater in COVID-19 patient platelets indicating a denser packing of organelles, and a more compact platelet. The COVID-19 patient platelets were significantly smaller -by 35% in volume - with most of the difference in organelle packing density being due to decreased platelet size. There was little to no 3D ultrastructural evidence for differential activation of the platelets from COVID-19 patients. Though limited by sample size, our studies suggest that factors outside of the platelets themselves are likely responsible for COVID-19 complications. Our studies show how deep learning 3D methodology can become the gold standard for 3D ultrastructural studies of platelets.


COVID-19 patients exhibit a range of symptoms including microclotting. Clotting is a complex process involving both circulating proteins and platelets, a cell within the blood. Increased clotting is suggestive of an increased level of platelet activation. If this were true, we reasoned that parts of the platelet involved in the release of platelet contents during clotting would have lost their content and appear as expanded, empty "ghosts." To test this, we drew blood from severely ill COVID-19 patients and compared the platelets within the blood draws to those from healthy volunteers. All procedures were done under careful attention to biosafety and approved by health authorities. We looked within the platelets for empty ghosts by the high magnification technique of electron microscopy. To count the ghosts, we developed new computer software. In the end, we found little difference between the COVID patient platelets and the healthy donor platelets. The results suggest that circulating proteins outside of the platelet are more important to the strong clotting response. The software developed will be used to analyze other disease states.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , RNA Viral , SARS-CoV-2 , Plaquetas/ultraestrutura , Organelas
3.
PLoS One ; 18(3): e0282587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893086

RESUMO

BACKGROUND: The COVID-19 pandemic has demonstrated the need for efficient and comprehensive, simultaneous assessment of multiple combined novel therapies for viral infection across the range of illness severity. Randomized Controlled Trials (RCT) are the gold standard by which efficacy of therapeutic agents is demonstrated. However, they rarely are designed to assess treatment combinations across all relevant subgroups. A big data approach to analyzing real-world impacts of therapies may confirm or supplement RCT evidence to further assess effectiveness of therapeutic options for rapidly evolving diseases such as COVID-19. METHODS: Gradient Boosted Decision Tree, Deep and Convolutional Neural Network classifiers were implemented and trained on the National COVID Cohort Collaborative (N3C) data repository to predict the patients' outcome of death or discharge. Models leveraged the patients' characteristics, the severity of COVID-19 at diagnosis, and the calculated proportion of days on different treatment combinations after diagnosis as features to predict the outcome. Then, the most accurate model is utilized by eXplainable Artificial Intelligence (XAI) algorithms to provide insights about the learned treatment combination impacts on the model's final outcome prediction. RESULTS: Gradient Boosted Decision Tree classifiers present the highest prediction accuracy in identifying patient outcomes with area under the receiver operator characteristic curve of 0.90 and accuracy of 0.81 for the outcomes of death or sufficient improvement to be discharged. The resulting model predicts the treatment combinations of anticoagulants and steroids are associated with the highest probability of improvement, followed by combined anticoagulants and targeted antivirals. In contrast, monotherapies of single drugs, including use of anticoagulants without steroid or antivirals are associated with poorer outcomes. CONCLUSIONS: This machine learning model by accurately predicting the mortality provides insights about the treatment combinations associated with clinical improvement in COVID-19 patients. Analysis of the model's components suggests benefit to treatment with combination of steroids, antivirals, and anticoagulant medication. The approach also provides a framework for simultaneously evaluating multiple real-world therapeutic combinations in future research studies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Big Data , Antivirais/uso terapêutico , Anticoagulantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...