Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transfus Med Hemother ; 47(4): 326-336, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32884505

RESUMO

The U antigen (MNS5) is one of 49 antigens belonging to the MNS blood group system (ISBT002) carried on glycophorins A (GPA) and B (GPB). U is present on the red blood cells in almost all Europeans and Asians but absent in approximately 1.0% of Black Africans. U negativity coincides with negativity for S (MNS3) and s (MNS4) on GPB, thus be called S-s-U-, and is thought to arise from homozygous deletion of GYPB. Little is known about the molecular background of these deletions. Bioinformatic analysis of the 1000 Genomes Project data revealed several candidate regions with apparent deletions in GYPB. Highly specific Gap-PCRs, only resulting in positive amplification from DNAs with deletions present, allowed for the exact genetic localization of 3 different breakpoints; 110.24- and 103.26-kb deletions were proven to be the most frequent in Black Americans and Africans. Among 157 CEPH DNAs, deletions in 6 out of 8 African ethnicities were present. Allele frequencies of the deletions within African ethnicities varied greatly and reached a cumulative 23.3% among the Mbuti Pygmy people from the Congo. Similar observations were made for U+var alleles, known to cause strongly reduced GPB expression. The 110- and 103-kb deletional GYPB haplotypes were found to represent the most prevalent hereditary factors causative of the MNS blood group phenotype S-s-U-. Respective GYPB deletions are now accessible by molecular detection of homo- and hemizygous transmission.

2.
Transfus Med Hemother ; 45(4): 239-250, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30283273

RESUMO

BACKGROUND: High-frequency blood group antigens (HFA) are present in >90% of the human population, according to some reports even in >99% of individuals. Therefore, patients lacking HFA may become challenging for transfusion support because compatible blood is hardly found, and if the patient carries alloantibodies, the cross-match will be positive with virtual every red cell unit tested. METHODS: In this study, we applied high-throughput blood group SNP genotyping on >37,000 Swiss blood donors, intending to identify homozygous carriers of low-frequency blood group antigens (LFA). RESULTS: 326 such individuals were identified and made available to transfusion specialists for future support of patients in need of rare blood products. CONCLUSION: Thorough comparison of minor allele frequencies using population genetics revealed heterogeneity of allele distributions among Swiss blood donors which may be explained by the topographical and cultural peculiarities of Switzerland. Moreover, geographically localized donor subpopulations are described which contain above-average numbers of individuals carrying rare blood group genotypes.

3.
Br J Haematol ; 174(4): 624-36, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27072601

RESUMO

Results of genotyping with true high-throughput capability for MNSs antigens are underrepresented, probably because of technical issues, due to the high level of nucleotide sequence homology of the paralogous genes GYPA, GYPB and GYPE. Eight MNSs-specific single nucleotide polymorphisms (SNP) were detected using matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS) in 5800 serologically M/N and S/s pre-typed Swiss blood donors and 50 individuals of known or presumptive black African ethnicity. Comparison of serotype with genotype delivered concordance rates of 99·70% and 99·90% and accuracy of genotyping alone of 99·88% and 99·95%, for M/N and S/s, respectively. The area under the curve of peak signals was measured in intron 1 of the two highly homologous genes GYPB and GYPE and allowed for gene copy number variation estimates in all individuals investigated. Elevated GYPB:GYPE ratios accumulated in several carriers of two newly observed GYP*401 variants, termed type G and H, both encoding for the low incidence antigen St(a). In black Africans, reduced GYPB gene contents were proven in pre-typed S-s-U- phenotypes and could be reproduced in unknown specimens. Quantitative gene copy number estimates represented a highly attractive supplement to conventional genotyping, solely based on MNSs SNPs.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Dosagem de Genes , Genótipo , Sistema do Grupo Sanguíneo MNSs/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Alelos , População Negra , Etnicidade , Glicoforinas/genética , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...