Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318795

RESUMO

Self-assembly of colloidal nanocrystals (NCs) into superlattices (SLs) is an appealing strategy to design hierarchically organized materials with promising functionalities. Mechanistic studies are still needed to uncover the design principles for SL self-assembly, but such studies have been difficult to perform due to the fast time and short length scales of NC systems. To address this challenge, we developed an apparatus to directly measure the evolving phases in situ and in real time of an electrostatically stabilized Au NC solution before, during, and after it is quenched to form SLs using small-angle X-ray scattering. By developing a quantitative model, we fit the time-dependent scattering patterns to obtain the phase diagram of the system and the kinetics of the colloidal and SL phases as a function of varying quench conditions. The extracted phase diagram is consistent with particles whose interactions are short in range relative to their diameter. We find the degree of SL order is primarily determined by fast (subsecond) initial nucleation and growth kinetics, while coarsening at later times depends nonmonotonically on the driving force for self-assembly. We validate these results by direct comparison with simulations and use them to suggest dynamic design principles to optimize the crystallinity within a finite time window. The combination of this measurement methodology, quantitative analysis, and simulation should be generalizable to elucidate and better control the microscopic self-assembly pathways of a wide range of bottom-up assembled systems and architectures.

2.
Nano Lett ; 23(4): 1467-1473, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36753635

RESUMO

We report spin-polarized transient absorption for colloidal CdSe nanoplatelets as functions of thickness (2-6 monolayer thickness) and core/shell motif. Using electro-optical modulation of co- and cross-polarization pump-probe combinations, we sensitively observe spin-polarized transitions. Core-only nanoplatelets exhibit few-picosecond spin lifetimes that weakly increase with layer thickness. The spectral content of differenced spin-polarized signals indicate biexciton binding energies that decrease with increasing thickness and smaller values than previously reported. Shell growth of CdS with controlled thicknesses, which partially delocalize the electron from the hole, significantly increases the spin lifetime to ∼49 ps at room temperature. Implementation of ZnS shells, which do not alter delocalization but do alter surface termination, increased spin lifetimes up to ∼100 ps, bolstering the interpretation that surface termination heavily influences spin coherence, likely due to passivation of dangling bonds. Spin precession in magnetic fields both confirms long coherence lifetime at room temperature and yields the excitonic g factor.

3.
ACS Nano ; 16(10): 16067-16076, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36121002

RESUMO

Microscale patterning of colloidal nanocrystal (NC) films is important for their integration in devices. Here, we introduce the direct optical patterning of all-inorganic NCs without the use of additional photosensitive ligands or additives. We determined that photoexposure of ligand-stripped, "bare" NCs in air significantly reduces their solubility in polar solvents due to photo-oxidation of surface ions. Doses as low as 20 mJ/cm2 could be used; the only obvious criterion for material selection is that the NCs need to have significant absorption at the irradiation wavelength. However, transparent NCs can still be patterned by mixing them with suitably absorbing NCs. This approach enabled the patterning of bare ZnSe, CdSe, ZnS, InP, CeO2, CdSe/CdS, and CdSe/ZnS NCs as well as mixtures of ZrO2 or HfO2 NCs with ZnSe NCs. Optical, X-ray photoelectron, and infrared spectroscopies show that solubility loss results from desorption of bound solvent due to photo-oxidation of surface ions. We also demonstrate two approaches, compatible with our patterning method, for modulating the porosity and refractive index of NC films. Block copolymer templating decreases the film density, and thus the refractive index, by introducing mesoporosity. Alternatively, hot isostatic pressing increases the packing density and refractive index of NC layers. For example, the packing fraction of a ZnS NC film can be increased from 0.51 to 0.87 upon hot isostatic pressing at 450 °C and 15 000 psi. Our findings demonstrate that direct lithography by photo-oxidation of bare NC surfaces is an accessible patterning method for facilitating the exploration of more complex NC device architectures while eliminating the influence of bulky or insulating surfactants.

4.
Science ; 375(6587): 1422-1426, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324292

RESUMO

Colloidal nanocrystals of metals, semiconductors, and other functional materials can self-assemble into long-range ordered crystalline and quasicrystalline phases, but insulating organic surface ligands prevent the development of collective electronic states in ordered nanocrystal assemblies. We reversibly self-assembled colloidal nanocrystals of gold, platinum, nickel, lead sulfide, and lead selenide with conductive inorganic ligands into supercrystals exhibiting optical and electronic properties consistent with strong electronic coupling between the constituent nanocrystals. The phase behavior of charge-stabilized nanocrystals can be rationalized and navigated with phase diagrams computed for particles interacting through short-range attractive potentials. By finely tuning interparticle interactions, the assembly was directed either through one-step nucleation or nonclassical two-step nucleation pathways. In the latter case, the nucleation was preceded by the formation of two metastable colloidal fluids.

5.
Nano Lett ; 21(4): 1613-1619, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33534587

RESUMO

Thiol ligands bound to the metallic core of nanoparticles determine their interactions with the environment and self-assembly. Recent studies suggest that equilibrium between bound and free thiols alters the ligand coverage of the core. Here, X-ray scattering and MD simulations investigate water-supported monolayers of gold-core nanoparticles as a function of the core-ligand coverage that is varied in experiments by adjusting the concentration of total thiols (sum of free and bound thiols). Simulations demonstrate that the presence of free thiols produces a nearly symmetrical coating of ligands on the core. X-ray measurements show that above a critical value of core-ligand coverage the nanoparticle core rises above the water surface, the edge-to-edge distance between neighboring nanoparticles increases, and the nanoparticle coverage of the surface decreases. These results demonstrate the important role of free thiols: they regulate the organization of bound thiols on the core and the interactions of nanoparticles with their surroundings.

6.
J Am Chem Soc ; 141(34): 13487-13496, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31379152

RESUMO

In contrast to molecular systems, which are defined with atomic precision, nanomaterials generally show some heterogeneity in size, shape, and composition. The sample inhomogeneity translates into a distribution of energy levels, band gaps, work functions, and other characteristics, which detrimentally affect practically every property of functional nanomaterials. We discuss a novel synthetic strategy, colloidal atomic layer deposition (c-ALD) with stationary reactant phases, which largely circumvents the limitations of traditional colloidal syntheses of nano-heterostructures with atomic precision. This approach allows for significant reduction of inhomogeneity in nanomaterials in complex nanostructures without compromising their structural perfection and enables the synthesis of epitaxial nano-heterostructures of unprecedented complexity. The improved synthetic control ultimately enables bandgap and strain engineering in colloidal nanomaterials with close to atomic accuracy. To demonstrate the power of the new c-ALD method, we synthesize a library of complex II-VI semiconductor nanoplatelet heterostructures. By combining spectroscopic and computational studies, we elucidate the subtle interplay between quantum confinement and strain effects on the optical properties of semiconductor nanostructures.

7.
Environ Sci Process Impacts ; 17(11): 1892-903, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26420634

RESUMO

This study examined the kinetics of photoreduction of Hg(ii) and photodemethylation of methylmercury (MeHg(+)) attached to, or in the presence of, dissolved organic matter (DOM). Both Hg(ii) and MeHg(+) are principally bound to reduced sulfur groups associated with DOM in many freshwater systems. We propose that a direct photolysis mechanism is plausible for reduction of Hg(ii) bound to reduced sulfur groups on DOM while an indirect mechanism is supported for photodemethylation of MeHg(+) bound to DOM. UV spectra of Hg(ii) and MeHg(+) bound to thiol containing molecules demonstrate that the Hg(ii)-S bond is capable of absorbing UV-light in the solar spectrum to a much greater extent than MeHg(+)-S bonds. Experiments with chemically distinct DOM isolates suggest that concentration of DOM matters little in the photochemistry if there are enough reduced S sites present to strongly bind MeHg(+) and Hg(ii); DOM concentration does not play a prominent role in photodemethylation other than to screen light, which was demonstrated in a field experiment in the highly colored St. Louis River where photodemethylation was not observed at depths ≥ 10 cm. Experiments with thiol ligands yielded slower photodegradation rates for MeHg(+) than in experiments with DOM and thiols; rates in the presence of DOM alone were the fastest supporting an intra-DOM mechanism. Hg(ii) photoreduction rates, however, were similar in experiments with only DOM, thiols plus DOM, or only thiols suggesting a direct photolysis mechanism. Quenching experiments also support the existence of an intra-DOM photodemethylation mechanism for MeHg(+). Utilizing the difference in photodemethylation rates measured for MeHg(+) attached to DOM or thiol ligands, the binding constant for MeHg(+) attached to thiol groups on DOM was estimated to be 10(16.7).


Assuntos
Mercúrio/química , Modelos Químicos , Poluentes Químicos da Água/química , Monitoramento Ambiental , Compostos de Metilmercúrio/química , Fotólise , Compostos de Sulfidrila/química , Luz Solar
8.
Compend Contin Educ Vet ; 32(5): E1-11; quiz E12, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20949420

RESUMO

Antibiotic resistance is a growing problem in the hospital setting. Organisms that cause hospital-acquired infections are generally highly resistant, requiring expensive antibiotics and further hospitalization. As a result, many owners of infected pets choose euthanasia. Appropriate hospital disinfection and staff hygiene practices can prevent such infections by reducing the pathogen load in a facility in accordance with the "nosocomial prevention triad"-appropriate antibiotic usage, staff and patient hygiene, and hospital maintenance and disinfection. This review outlines the development and implementation of hospital disinfection protocols and hand hygiene practices in small animal veterinary hospitals.


Assuntos
Infecção Hospitalar/veterinária , Arquitetura de Instituições de Saúde/normas , Desinfecção das Mãos/normas , Hospitais Veterinários/normas , Higiene , Animais , Infecção Hospitalar/prevenção & controle , Resistência a Medicamentos , Humanos , Guias de Prática Clínica como Assunto
9.
Compend Contin Educ Vet ; 32(5): E1-7; quiz E8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20949419

RESUMO

Prevention of nosocomial infection begins with the hospital layout and identification of special considerations for particular patients. The construction of a new hospital or renovation of an existing hospital requires careful planning and consideration of the needs of the expected patient population and hospital staff. This article discusses considerations for preventing cross-contamination of pathogens through hospital design, as well as special considerations for particular patients, specifically those in isolation areas and surgical suites.


Assuntos
Infecção Hospitalar/veterinária , Arquitetura de Instituições de Saúde/normas , Hospitais Veterinários/normas , Higiene , Animais , Infecção Hospitalar/prevenção & controle , Guias como Assunto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...