Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 640: 1015-1028, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921382

RESUMO

HYPOTHESIS: Recently, it has become possible to synthesize hollow polyelectrolyte nano- and microgels. The shell permeability can be controlled by external stimuli, while the cavity can serve as a storage place for guest molecules. However, there is a lack of a detailed understanding at the molecular level regarding the role of the network topology, inhomogeneities of the distribution of cross-links, and the impact of the electrostatics on the structural response of hollow microgel to external stimuli. To bridge these gaps, molecular dynamics (MD) of computer simulations are used. EXPERIMENTS: Here, we propose a fresh methodology to create realistic hollow microgel particles in silico. The technique involves a gradual change in the average local length of subchains depending on the distance to the center of mass of the microgel particles resulting in the microgels with a non-uniform distribution of cross-linking species. In particular, a series of microgels with (i) a highly cross-linked inner part of the shell and gradually decreased cross-linker concentration towards the periphery, (ii) microgels with loosely cross-linked inner and outer parts, as well as (iii) microgels with a more-or-less homogeneous structure, have been created and validated. Counterions and salt ions are taken into account explicitly, and electrostatic interactions are described by the Coulomb potential. FINDINGS: Our studies reveal a strong dependence of the microgel swelling response on the network topology. Simple redistribution of cross-links plays a significant role in the structure of the microgels, including cavity size, microgel size, fuzziness, and extension of the inner and outer parts of the microgels. Our results indicate the possibilities of qualitative justification of the structure of the hollow microgels in the experiments by measuring the relative change in the size of the sacrificial core to the size of the cavity and by estimation of a power law function, [Formula: see text] , of the hydrodynamic radius of the hollow microgels as a function of added salt concentration.

2.
Polymers (Basel) ; 14(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36433158

RESUMO

In this study, we propose computer simulations of charged cylindrical microgels. The effects of cross-linking density, aspect ratio, and fraction of charged groups on the microgel swelling and collapse with a variation in the solvent quality were studied. The results were compared with those obtained for equivalent neutral cylindrical microgels. The study demonstrated that microgels' degree of swelling strongly depends on the fraction of charged groups. Polyelectrolyte microgels under adequate solvent conditions are characterized by a larger length and thickness than their neutral analogues: the higher the fraction of charged groups, the longer their length and greater their thickness. Microgels' collapse upon solvent quality decline is characterized by a decrease in length and non-monotonous behavior of its thickness. First, the thickness decreases due to the attraction of monomer units (beads) upon collapse. The further thickness increase is related to the surface tension, which tends to reduce the anisotropy of collapsed objects (the minimum surface energy is known to be achieved for the spherical objects). This reduction is opposed by the network elasticity. The microgels with a low cross-linking density and/or a low enough aspect ratio reveal a cylinder-to-sphere collapse. Otherwise, the cylindrical shape is preserved in the course of the collapse. Aspect ratio as a function of the solvent quality (interaction parameter) demonstrates the maximum, which is solely due to the electrostatics. Finally, we plotted radial concentration profiles for network segments, their charged groups, and counterions.

3.
J Phys Chem B ; 124(5): 914-920, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935090

RESUMO

The structure of complexes formed by oppositely charged polyelectrolytes and adsorbed layers on charged surfaces is sensitive to low-molecular-weight salt. Furthermore, if the concentration exceeds some threshold value, the complexes and adsorbed chains can be "dissolved". This is due to the screening of the electrostatic interactions between charged units. In the current paper, we perform a comparative analysis of "dissolution" (dissociation) of complexes and layers upon addition of salt. For this, the conventional Brownian dynamics of computer simulations is used. We demonstrate that the complex based on linear chains dissociates at lower salt concentration than that required for desorption of equivalent chains from an oppositely charged surface. The physical reason is the difference in the symmetry of the electric field, which binds the chains into the complex (layer). In the salt-free regime, the intensity of the electric field (and attractive force) between two linear chains decays with the distance R between them, like for two spherical objects, ∼R-2, if R is bigger than the characteristic size of the chain. On the contrary, the attractive force of the chain to the infinite surface does not depend on the distance to the surface (the electric field is constant). Therefore, if attractive forces in the condensed states of the two systems are equal, one needs to add more salt to screen the constant force than the decaying one. The computer simulation results on the adsorption of the chains were compared with the experimental data obtained for adsorption of cationic poly(4-vinylpyridine) on the surface of anionic liposomes. Good quantitative agreement was achieved.

4.
Biomacromolecules ; 20(4): 1578-1591, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822384

RESUMO

A striking discovery in our work is that the distribution of ionizable groups in polyampholyte microgels (random and core-shell) controls the interactions with the captured proteins. Polyampholyte microgels are capable to switch reversibly their charges from positive to negative depending on pH. In this work, we synthesized differently structured polyampholyte microgels with controlled amounts and different distribution of acidic and basic moieties as colloidal carriers to study the loading and release of the model protein cytochrome c (cyt-c). Polyampholyte microgels were first loaded with cyt-c using the electrostatic attraction under pH 8 when the microgels were oppositely charged with respect to the protein. Then the protein release was investigated under different pH (3, 6, and 8) both with experimental methods and molecular dynamics simulations. For microgels with a random distribution of ionizable groups complete and accelerated (compared to polyelectrolyte counterpart) release of cyt-c was observed due to electrostatic repulsive interactions. For core-shell structured microgels with defined ionizable groups, it was possible to entrap the protein inside the neutral core through the formation of a positively charged shell, which acts as an electrostatic potential barrier. We postulate that this discovery allows the design of functional colloidal carriers with programmed release kinetics for applications in drug delivery, catalysis, and biomaterials.


Assuntos
Citocromos c/química , Enzimas Imobilizadas/química , Metacrilatos/química , Microgéis/química , Preparações de Ação Retardada/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...