Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Stomatol Oral Maxillofac Surg ; 120(5): 432-442, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30641282

RESUMO

BACKGROUND: In craniofacial reconstruction, the gold standard procedure for bone regeneration is the autologous bone graft (BG). However, this procedure requiring bone harvesting is a source of morbidity. Bone substitutes, such as biphasic calcium phosphate (BCP), represent an interesting alternative but are not sufficient for bone healing in hypoplastic conditions. In such conditions, osteoprogenitors are essential to provide osteoinduction. Previous studies have shown that BCP associated with total bone marrow (TBM) provides same bone reconstruction as bone graft in a rat model of calvaria defect. Furthermore, adipose tissue stromal vascular fraction (SVF) seems to be another promising source of osteoprogenitor cells that can be used intra-operatively. This study aimed to combine, intra-operative BCP-based bone tissue engineering strategies with TBM or SVF from human sources. METHODS: 5 mm critical-size calvaria defects were performed in 18 nude rat. The defects were filled with intra-operative bone tissue engineering procedures: human BG, human TBM + BCP, human SVF + BCP and, rat TBM + BCP. Animals were sacrificed 8 weeks after implantation and calvaria were processed for histological and radiological examinations. Implanted cells were labelled with a fluorochrome. RESULTS: Micro-CT analysis revealed partial repair of bone defect. Only hBG significantly succeeded in healing the defect (43.1%). However, low rate of newly formed bone tissue was observed in all tissue engineering conditions (hTBM, hSVF, ratTBM). DISCUSSION: The lack of bone formation observed in this study could possibly be attributed to the model. CONCLUSION: This study combined with a literature analysis show the stringency of the nude rat calvaria model in term of bone regeneration.


Assuntos
Substitutos Ósseos , Engenharia Tecidual , Tecido Adiposo , Animais , Regeneração Óssea , Humanos , Osteogênese , Ratos
2.
Biomed Mater Eng ; 20(3): 159-66, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20930323

RESUMO

Articular cartilage does not repair itself spontaneously. To promote its repair, the transfer of stem cells from adipose tissue (ATSC) using an injectable self-setting cellulosic-hydrogel (Si-HPMC) appears promising. In this context, the objective of this work was to investigate the influence of in vitro chondrogenic differentiation of ATSC on the in vivo cartilage formation when combined with Si-HPMC. In a first set of experiments, we characterized ATSC for their ability to proliferate, self renew and express typical mesenchymal stem cell surface markers. Then, the potential of ATSC to differentiate towards the chondrogenic lineage and the optimal culture conditions to drive this differentiation were evaluated. Real-time RT-PCR and histological analysis for sulphated glycosaminoglycans and type II collagen revealed that 3-dimensional culture and hypoxic condition favored ATSC chondrogenesis regarding mRNA expression level and the corresponding proteins production. In order to assess the phenotypic stability of chondrogenically-differentiated ATSC, real-time RT-PCR for specific terminal chondrogenic markers and alkaline phosphatase activity assay were performed. In addition to promote chondrogenesis, our culture conditions seem to prevent the terminal differentiation of ATSC. Histological examination of ATSC/Si-HPMC implants suggested that the in vitro chondrogenic pre-commitment of ATSC in monolayer is sufficient to obtain cartilaginous tissue in vivo.


Assuntos
Cartilagem Articular/citologia , Cartilagem Articular/crescimento & desenvolvimento , Celulose/química , Condrócitos/citologia , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Condrócitos/fisiologia , Humanos , Teste de Materiais , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...