Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(2): 218-229, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36443572

RESUMO

Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-ß-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.


Assuntos
Bifidobacterium longum , Manose , Animais , Humanos , Manose/metabolismo , Bifidobacterium longum/metabolismo , Microscopia Crioeletrônica , Polissacarídeos/química , Manosidases/metabolismo , Glicosídeo Hidrolases/química , Bifidobacterium/metabolismo , Mamíferos
2.
J Mol Biol ; 433(15): 167096, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34116125

RESUMO

In order to form functional filaments, human septins must assemble into hetero-oligomeric rod-like particles which polymerize end-to-end. The rules governing the assembly of these particles and the subsequent filaments are incompletely understood. Although crystallographic approaches have been successful in studying the separate components of the system, there has been difficulty in obtaining high resolution structures of the full particle. Here we report a first cryo-EM structure for a hexameric rod composed of human septins 2, 6 and 7 with a global resolution of ~3.6 Å and a local resolution of between ~3.0 Å and ~5.0 Å. By fitting the previously determined high-resolution crystal structures of the component subunits into the cryo-EM map, we are able to provide an essentially complete model for the particle. This exposes SEPT2 NC-interfaces at the termini of the hexamer and leaves internal cavities between the SEPT6-SEPT7 pairs. The floor of the cavity is formed by the two α0 helices including their polybasic regions. These are locked into place between the two subunits by interactions made with the α5 and α6 helices of the neighbouring monomer together with its polyacidic region. The cavity may serve to provide space allowing the subunits to move with respect to one another. The elongated particle shows a tendency to bend at its centre where two copies of SEPT7 form a homodimeric G-interface. Such bending is almost certainly related to the ability of septin filaments to recognize and even induce membrane curvature.


Assuntos
Proteínas de Ciclo Celular/química , Septinas/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Septinas/metabolismo
3.
Phys Chem Chem Phys ; 23(18): 10953-10963, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913458

RESUMO

Four amphiphilic peptides were synthesized, characterized, and evaluated regarding their efficiency in the catalysis of direct aldol reactions in water. The lipopeptides differ by having a double lipid chain and a guanidinium pyrrole group functionalizing one Lys side chain. All the samples are composed of the amino acids l-proline (P), l-arginine (R), or l-lysine (K) functionalized with the cationic guanidiniocarbonyl pyrrole unit (GCP), l-tryptophan (W), and l-glycine (G), covalently linked to one or two long aliphatic chains, leading to surfactant-like designs with controlled proline protonation state and different stereoselectivity. Critical aggregation concentrations (cac) were higher in the presence of the GCP group, suggesting that self-assembly depends on charge distribution along the peptide backbone. Cryogenic Transmission Electron Microscopy (Cryo-TEM) and Small Angle X-ray Scattering (SAXS) showed a rich polymorphism including spherical, cylindrical, and bilayer structures. Molecular dynamics simulations performed to assess the lipopeptide polymorphs revealed an excellent agreement with core-shell arrangements derived from SAXS data and provided an atomistic view of the changes incurred by modifying head groups and lipid chains. The resulting nanostructures behaved as excellent catalysts for aldol condensation reactions, in which superior conversions (>99%), high diastereoselectivities (ds = 94 : 6), and enantioselectivities (ee = 92%) were obtained. Our findings contribute to elucidate the effect of nanoscale organization of lipopeptide assemblies in the catalysis of aldol reactions in an aqueous environment.


Assuntos
Aldeídos/química , Lipopeptídeos/química , Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão , Conformação Molecular , Simulação de Dinâmica Molecular , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
4.
J Inherit Metab Dis ; 43(3): 586-601, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943253

RESUMO

ß-Cyclodextrin (ß-CD) is being considered a promising therapy for Niemann-Pick C (NPC) disease because of its ability to mobilise the entrapped cholesterol from lysosomes, however, a major limitation is its inability to cross the blood-brain barrier (BBB) and address the central nervous system (CNS) manifestations of the disease. Considering this, we aimed to design nanoparticles able to cross the BBB and deliver ß-CD into the CNS lysosomes. The physicochemical characteristics of ß-CD-loaded nanoparticles were evaluated by dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy. The in vitro analyses were performed with NPC dermal fibroblasts and the ß-CD-loaded nanoparticles were tracked in vivo. The nanoparticles showed a mean diameter around 120 nm with a disordered bicontinuous inner structure. The nanoparticles did not cause decrease in cell viability, impairment in the antioxidant enzymes activity, damage to biomolecules or release of reactive species in NPC dermal fibroblasts; also, they did not induce genotoxicity or alter the mitochondrial function in healthy fibroblasts. The ß-CD-loaded nanoparticles were taken up by lysosomes reducing the cholesterol accumulated in NPC fibroblasts and reached the CNS of mice more intensely than other organs, demonstrating advantages compared to the free ß-CD. The results demonstrated the potential of the ß-CD-loaded nanoparticles in reducing the brain impairment of NPC.


Assuntos
Colesterol/metabolismo , Nanopartículas/administração & dosagem , Doença de Niemann-Pick Tipo C/tratamento farmacológico , beta-Ciclodextrinas/administração & dosagem , Animais , Transporte Biológico , Estudos de Casos e Controles , Criança , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Doença de Niemann-Pick Tipo C/metabolismo , beta-Ciclodextrinas/farmacologia
5.
Heliyon ; 5(10): e02648, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31720452

RESUMO

Lauric acid (LAH) strongly inhibits the growth of acne-causing bacteria. LAH is essentially water-insoluble and the solubility of laurate (LA) salts are medium and temperature dependent. Hence, LAH/LA preparations are difficult to formulate. Here we fully characterized phospholipid vesicles containing up to 50 mol% LAH. Vesicles of dipalmitoylphosphatidylcholine (DPPC) containing LAH, at pHs 7.4 and 5.0, were characterized measuring size, charge, bilayer phase transition temperature (Tm) and permeability of water-soluble probes. Small angle X-ray scattering and cryotransmission electron microscopy showed multilamellar vesicles at low LAH %. Increasing LAH % had a negligible effect on particle size. An internal aqueous compartment in all vesicle's preparations, even at equimolar DPPC: LAH fractions, was demonstrated using water-soluble probes. At pH 5.0, the interaction between DPPC and LAH increased the Tm and phase transition cooperativity showing a single lipid phase formed by hydrogen-bonded DPPC: LAH complexes. At pH 7.4, vesicles containing 50 mol% LAH exhibited distinct phases, ascribed to complex formation between LAH and LA or LAH and DPPC. LAH incorporated in the vesicles minimally permeated a skin preparation at both pHs, indicating that the primary sites of LAH solubilization were the skin layers. These results provide the foundations for developing processes and products containing DPPC: LAH.

6.
Cytoskeleton (Hoboken) ; 76(9-10): 457-466, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31608568

RESUMO

Septins are GTP binding proteins considered to be novel components of the cytoskeleton. They polymerize into filaments based on hexameric or octameric core particles in which two copies of either three or four different septins, respectively, assemble into a specific sequence. Viable combinations of the 13 human septins are believed to obey substitution rules in which the different septins involved must come from distinct subgroups. The hexameric assembly, for example, has been reported to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7. Here, we have replaced SEPT2 by SEPT5 according to the substitution rules and used transmission electron microscopy to demonstrate that the resulting recombinant complex assembles into hexameric particles which are inverted with respect that predicted previously. MBP-SEPT5 constructs and immunostaining show that SEPT5 occupies the terminal positions of the hexamer. We further show that this is also true for the assembly including SEPT2, in direct contradiction with that reported previously. Consequently, both complexes expose an NC interface, as reported for yeast, which we show to be more susceptible to high salt concentrations. The correct assembly for the canonical combination of septins 2-6-7 is therefore established to be SEPT2-SEPT6-SEPT7-SEPT7-SEPT6-SEPT2, implying the need for revision of the mechanisms involved in filament assembly.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Septinas/metabolismo , Septinas/ultraestrutura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Expressão Gênica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Septinas/química , Septinas/genética , Espectrometria de Massas em Tandem
7.
Mater Sci Eng C Mater Biol Appl ; 100: 363-377, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948072

RESUMO

The interaction of single-layer graphene oxide (SLGO) and multi-layered graphene oxide (MLGO) with a cell culture medium (i.e. DMEM) was studied by evaluating fetal bovine serum (FBS) protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. SLGO and MLGO exhibited different colloidal behavior in the culture medium, which was visualized by cryogenic transmission electron microscopy in situ analysis. Exploring proteomics and bioinformatics tools, 394 and 290 proteins were identified on the SLGO and MLGO hard corona compositions, respectively. From this amount, 115 proteins were exclusively detected on the SLGO and merely 11 on MLGO. SLGO enriched FBS proteins involved in metabolic processes and signal transduction, while MLGO enriched proteins involved in cellular development/structure, and lipid transport/metabolic processes. Such a distinct corona profile is due to differences on surface chemistry, aggregation behavior and the surface area of GO materials. Hydrophilic interactions were found to play a greater role in protein adsorption by MLGO than SLGO. Our results point out implications for in vitro studies of graphene oxide materials concerning the effective dose delivered to cells and corona bioactivity. Finally, we demonstrated the importance of integrating conventional and modern techniques thoroughly to understand the GO-FBS complexes towards more precise, reliable and advanced in vitro nanotoxicity assessment.


Assuntos
Proteínas Sanguíneas/química , Meios de Cultura/química , Grafite/química , Nanopartículas/toxicidade , Coroa de Proteína/química , Testes de Toxicidade , Animais , Bovinos , Proteômica , Água
8.
Eur J Pharm Biopharm ; 133: 96-103, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30315863

RESUMO

Lysosomal Storage Disorders (LSDs) are characterized by an abnormal accumulation of substrates within the lysosome and comprise more than 50 genetic disorders with a frequency of 1:5000 live births. Nanotechnology may be a promising way to circumvent the drawbacks of the current therapies for lysosomal diseases. The blood circulation time and bioavailability of the enzymes or drugs could be improved by inserting them in nanocarriers, which could decrease and/or avoid the need of frequent intravenous infusions along with the minimization or elimination of associated immunogenic responses. Considering the exposed, we aimed to build monoolein-based nanoparticles stabilized by polysorbate 80 as a smart platform able to reach the central nervous system (CNS) to deliver drugs or enzymes inside lysosomes. We developed and characterized the nanoparticles by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (Cryo-TEM). The nanoparticles showed a diameter of 115 nm, which is compatible with in vivo application. The SAXS patterns of the formulations displayed a single broad correlation peak that was fitted to the Teubner-Strey model confirming that disordered bicontinuous structures were obtained. Cryo-TEM images corroborated this finding and showed nanoparticles with size values that are similar to those determined by DLS. Furthermore, the nanoparticles did not present cytotoxicity when they were incubated with human fibroblasts, and demonstrated hemolytic activity proportional to the negative control, proving to be safe for parenteral administration. Through the use of a fluorescent dye to track the nanoparticles inside the cell, we demonstrated that they reached lysosomes after 1 h of treatment. More interestingly, the fluorescent dye was detected in the CNS of mice just after 3 h of treatment. The nanoparticles show great potential to improve the treatment of LSDs with brain impairment, acting as a smart platform to targeted delivery of drugs or enzymes.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Glicerídeos/química , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Nanopartículas/química , Animais , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lisossomos/efeitos dos fármacos , Masculino , Camundongos , Nanotecnologia/métodos , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
9.
Nat Microbiol ; 3(12): 1429-1440, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30349081

RESUMO

Type IV secretion (T4S) systems form the most common and versatile class of secretion systems in bacteria, capable of injecting both proteins and DNAs into host cells. T4S systems are typically composed of 12 components that form 2 major assemblies: the inner membrane complex embedded in the inner membrane and the core complex embedded in both the inner and outer membranes. Here we present the 3.3 Å-resolution cryo-electron microscopy model of the T4S system core complex from Xanthomonas citri, a phytopathogen that utilizes this system to kill bacterial competitors. An extensive mutational investigation was performed to probe the vast network of protein-protein interactions in this 1.13-MDa assembly. This structure expands our knowledge of the molecular details of T4S system organization, assembly and evolution.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Complexos Multiproteicos/química , Sistemas de Secreção Tipo IV/química , Xanthomonas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Complexos Multiproteicos/genética , Mutação , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genética
10.
ACS Appl Mater Interfaces ; 10(26): 21891-21900, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29889487

RESUMO

A new nanohydrogel drug delivery platform based on Laponite nanodiscs, polyacrylate, and sodium phosphate salts is described. The hybrid nanohydrogel is tailored to obtain soft and flexible nanohydrogels with G' around 3 kPa, which has been proposed as the ideal stiffness for drug delivery applications. In vitro studies demonstrate that the new nanohydrogels are biocompatible, biodegradable, nonswellable, pH-responsive, and noncytotoxic and are able to deliver antineoplastic drugs into cancer cells. The IC50 of nanohydrogels containing cisplatin, 4-fluorouracil, and cyclophosphamide is significantly lower than the IC50 of the free drugs. In vivo experiments suggest that the new nanomaterials are biocompatible and do not accumulate in crucial organs. The simple formulation procedure enables encapsulation of virtually any water-soluble molecule, without the need for chemical modification of the guests. These nanohydrogels are a versatile platform that enables the simultaneous encapsulation of several cancer drugs, yielding an efficient drug cocktail delivery system, which for instance presents a positive synergistic effect against MCF-7 cells.


Assuntos
Nanoestruturas , Antineoplásicos , Sistemas de Liberação de Medicamentos , Hidrogéis , Silicatos , Nanomedicina Teranóstica
11.
Eur Biophys J ; 47(5): 561-571, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29376196

RESUMO

In this work, we developed a coarse-grained model of sumatriptan suitable for extensive molecular dynamics simulations. First, we confirmed the interfacial distribution of this drug in bilayers through cryogenic transmission electron microscopy and small-angle X-ray scattering techniques, as was predicted by our previous atomistic simulations. Based on these simulations, we developed a coarse-grained model for sumatriptan able to reproduce its overall molecular behavior, captured by atomistic simulations and experiments. We then tested the sumatriptan model in a micellar environment along with experimental characterization of sumatriptan-loaded micelles. The simulation results showed good agreement with photon correlation spectroscopy and electrophoretic mobility experiments performed in this work. The particle size of the obtained micelles was comparable with the simulated ones; meanwhile, zeta-potential results suggest adsorption of the drug on the micellar surface. This model is a step forward in the search for a suitable drug-delivery system for sumatriptan.


Assuntos
Simulação de Dinâmica Molecular , Sumatriptana/química , Bicamadas Lipídicas/química , Lipossomos/química , Micelas , Microscopia Eletrônica , Conformação Molecular , Poloxâmero/química , Espalhamento a Baixo Ângulo , Difração de Raios X
12.
IUCrJ ; 4(Pt 5): 678-694, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989723

RESUMO

Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous ('four-dimensional') cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, 'random-startup' three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external 'starting models'. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive 'ABC-4D' pipeline is based on the two-dimensional reference-free 'alignment by classification' (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Šis presented as an example of the use of the ABC-4D procedure.

13.
Sci Rep ; 5: 10317, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26068909

RESUMO

Large datasets are emerging in many fields of image processing including: electron microscopy, light microscopy, medical X-ray imaging, astronomy, etc. Novel computer-controlled instrumentation facilitates the collection of very large datasets containing thousands of individual digital images. In single-particle cryogenic electron microscopy ("cryo-EM"), for example, large datasets are required for achieving quasi-atomic resolution structures of biological complexes. Based on the collected data alone, large datasets allow us to precisely determine the statistical properties of the imaging sensor on a pixel-by-pixel basis, independent of any "a priori" normalization routinely applied to the raw image data during collection ("flat field correction"). Our straightforward "a posteriori" correction yields clean linear images as can be verified by Fourier Ring Correlation (FRC), illustrating the statistical independence of the corrected images over all spatial frequencies. The image sensor characteristics can also be measured continuously and used for correcting upcoming images.

14.
Mol Plant Microbe Interact ; 26(11): 1281-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23902259

RESUMO

Cerato-platanins (CP) are small, cysteine-rich fungal-secreted proteins involved in the various stages of the host-fungus interaction process, acting as phytotoxins, elicitors, and allergens. We identified 12 CP genes (MpCP1 to MpCP12) in the genome of Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, and showed that they present distinct expression profiles throughout fungal development and infection. We determined the X-ray crystal structures of MpCP1, MpCP2, MpCP3, and MpCP5, representative of different branches of a phylogenetic tree and expressed at different stages of the disease. Structure-based biochemistry, in combination with nuclear magnetic resonance and mass spectrometry, allowed us to define specialized capabilities regarding self-assembling and the direct binding to chitin and N-acetylglucosamine (NAG) tetramers, a fungal cell wall building block, and to map a previously unknown binding region in MpCP5. Moreover, fibers of MpCP2 were shown to act as expansin and facilitate basidiospore germination whereas soluble MpCP5 blocked NAG6-induced defense response. The correlation between these roles, the fungus life cycle, and its tug-of-war interaction with cacao plants is discussed.


Assuntos
Agaricales/genética , Cacau/microbiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Doenças das Plantas/microbiologia , Acetilglucosamina/metabolismo , Agaricales/efeitos dos fármacos , Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Quitina/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Interações Hospedeiro-Patógeno , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Filogenia , Ligação Proteica , Análise de Sequência de DNA , Análise de Sequência de RNA , Esporos Fúngicos
15.
PLoS One ; 8(4): e60690, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577149

RESUMO

Cell division in bacteria is regulated by proteins that interact with FtsZ and modulate its ability to polymerize into the Z ring structure. The best studied of these regulators is MinC, an inhibitor of FtsZ polymerization that plays a crucial role in the spatial control of Z ring formation. Recent work established that E. coli MinC interacts with two regions of FtsZ, the bottom face of the H10 helix and the extreme C-terminal peptide (CTP). Here we determined the binding site for MinC on Bacillus subtilis FtsZ. Selection of a library of FtsZ mutants for survival in the presence of Min overexpression resulted in the isolation of 13 Min-resistant mutants. Most of the substitutions that gave rise to Min resistance clustered around the H9 and H10 helices in the C-terminal domain of FtsZ. In addition, a mutation in the CTP of B. subtilis FtsZ also produced MinC resistance. Biochemical characterization of some of the mutant proteins showed that they exhibited normal polymerization properties but reduced interaction with MinC, as expected for binding site mutations. Thus, our study shows that the overall architecture of the MinC-FtsZ interaction is conserved in E. coli and B. subtilis. Nevertheless, there was a clear difference in the mutations that conferred Min resistance, with those in B. subtilis FtsZ pointing to the side of the molecule rather than to its polymerization interface. This observation suggests that the mechanism of Z ring inhibition by MinC differs in both species.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
16.
J Phys Chem B ; 114(3): 1529-40, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20043653

RESUMO

The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics simulations of the TRalpha and TRbeta LBDs in the absence and in the presence of the natural ligand Triac. The simulations show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary structure elements, while the structure remains essentially compact, resembling a molten globule state. This differs from most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TRalpha and TRbeta subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H11, and the interaction of the region between H1 and the Omega-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.


Assuntos
Receptores alfa dos Hormônios Tireóideos/química , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/química , Receptores beta dos Hormônios Tireóideos/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Desnaturação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
17.
Biophys Chem ; 137(2-3): 81-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18676081

RESUMO

Human nerve growth factor-induced B (NGFI-B) is a member of the NR4A subfamily of orphan nuclear receptors (NRs). Lacking identified ligands, orphan NRs show particular co-regulator proteins binding properties, different from other NRs, and they might have a non-classical quaternary organization. A body of evidence suggests that NRs recognition of and binding to ligands, DNA, homo- and heterodimerization partners and co-regulator proteins involve significant conformational changes of the NR ligand-binding domains (LBDs). To shed light on largely unknown biophysical properties of NGFI-B, here we studied structural organization and unfolding properties of NGFI-B ligand (like)-binding domain induced by chemical perturbation. Our results show that NGFI-B LBD undergoes a two-state guanidine hydrochloride (GndHCl) induced denaturation, as judged by changes in the alpha-helical content of the protein monitored by circular dichroism spectroscopy (CD). In contrast, changes in the tertiary structure of NGFI-B LBD, reported by intrinsic fluorescence, reveal a clear intermediate state. Additionally, SAXS results demonstrate that the intermediate observed by intrinsic fluorescence is a partially folded homodimeric structure, which further unfolds without dissociation at higher GndHCl concentrations. This partially unfolded dimeric assembly of NGFI-B LBD might resemble an intermediate that this domain access momentarily in the native state upon interactions with functional partners.


Assuntos
Proteínas de Ligação a DNA/química , Conformação Proteica , Receptores de Esteroides/química , Dicroísmo Circular , Proteínas de Ligação a DNA/genética , Guanidina/química , Humanos , Modelos Moleculares , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Desnaturação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Esteroides/genética , Proteínas Recombinantes/química , Espalhamento de Radiação , Espectrometria de Fluorescência , Raios X
18.
Protein Sci ; 16(8): 1762-72, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17600153

RESUMO

The orphan receptor nerve growth factor-induced B (NGFI-B) is a member of the nuclear receptor's subfamily 4A (Nr4a). NGFI-B was shown to be capable of binding both as a monomer to an extended half-site containing a single AAAGGTCA motif and also as a homodimer to a widely separated everted repeat, as opposed to a large number of nuclear receptors that recognize and bind specific DNA sequences predominantly as homo- and/or heterodimers. To unveil the structural organization of NGFI-B in solution, we determined the quaternary structure of the NGFI-B LBD by a combination of ab initio procedures from small-angle X-ray scattering (SAXS) data and hydrogen-deuterium exchange followed by mass spectrometry. Here we report that the protein forms dimers in solution with a radius of gyration of 2.9 nm and maximum dimension of 9.0 nm. We also show that the NGFI-B LBD dimer is V-shaped, with the opening angle significantly larger than that of classical dimer's exemplified by estrogen receptor (ER) or retinoid X receptor (RXR). Surprisingly, NGFI-B dimers formation does not occur via the classical nuclear receptor dimerization interface exemplified by ER and RXR, but instead, involves an extended surface area composed of the loop between helices 3 and 4 and C-terminal fraction of the helix 3. Remarkably, the NGFI-B dimer interface is similar to the dimerization interface earlier revealed for glucocorticoid nuclear receptor (GR), which might be relevant to the recognition of cognate DNA response elements by NGFI-B and to antagonism of NGFI-B-dependent transcription exercised by GR in cells.


Assuntos
Proteínas de Ligação a DNA/química , Receptores Citoplasmáticos e Nucleares/química , Receptores de Esteroides/química , Fatores de Transcrição/química , Dicroísmo Circular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Dimerização , Espectrometria de Massas , Modelos Biológicos , Modelos Moleculares , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Estrutura Secundária de Proteína , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/isolamento & purificação , Receptores de Glucocorticoides/química , Receptores de Esteroides/genética , Receptores de Esteroides/isolamento & purificação , Espalhamento a Baixo Ângulo , Soluções , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
19.
Biophys J ; 90(9): 3216-23, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16473915

RESUMO

The Echinococcus granulosus actin filament-fragmenting protein (EgAFFP) is a three domain member of the gelsolin family of proteins, which is antigenic to human hosts. These proteins, formed by three or six conserved domains, are involved in the dynamic rearrangements of the cytoskeleton, being responsible for severing and capping actin filaments and promoting nucleation of actin monomers. Various structures of six domain gelsolin-related proteins have been investigated, but little information on the structure of three domain members is available. In this work, the solution structure of the three domain EgAFFP has been investigated through small-angle x-ray scattering (SAXS) studies. EgAFFP exhibits an elongated molecular shape. The radius of gyration and the maximum dimension obtained by SAXS were, respectively, 2.52 +/- 0.01 nm and 8.00 +/- 1.00 nm, both in the absence and presence of Ca2+. Two different molecular homology models were built for EgAFFP, but only one was validated through SAXS studies. The predicted structure for EgAFFP consists of three repeats of a central beta-sheet sandwiched between one short and one long alpha-helix. Possible implications of the structure of EgAFFP upon actin binding are discussed.


Assuntos
Simulação por Computador , Proteínas do Citoesqueleto/química , Echinococcus granulosus/química , Modelos Moleculares , Animais , Echinococcus granulosus/genética , Gelsolina/química , Cavalos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espalhamento de Radiação , Homologia Estrutural de Proteína , Raios X
20.
Protein Expr Purif ; 41(1): 113-20, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15802228

RESUMO

Receptor-like protein tyrosine phosphatases generally contain one or two conserved intracellular catalytic domains with a conserved sequence motif ([I/V]HCXAGXXR[S/T]G), a single transmembrane domain, and an external highly variable part. Here, we describe cloning of the intracellular catalytic domain of the rat protein tyrosine phosphatase eta (rPTPetaCD) into pET28a(+) vector, its expression in Escherichia coli, purification and initial characterization. The purification of His6-tagged rPTPetaCD to near homogeneity was achieved by a combination of affinity and size exclusion chromatography. The His-tag was subsequently removed by thrombin digestion. PhastGel IEF electrophoresis demonstrated that the isoelectric point of this 41 kDa His6-tag free recombinant protein was 7.3, which is just slightly higher than the theoretically predicted value of 7.2. To assess the functionality of the rPTPetaCD we used the pNPP hydrolysis assay and observed that the enzyme has a specific activity of 9 nmol/min/mug. The secondary structure and stability of the recombinant protein was also analyzed by circular dichroism and fluorescence spectroscopy. In summary, the rPTPetaCD is stable at 18 degrees C, properly folded, and fully active, which makes it a suitable candidate for structural and functional studies.


Assuntos
Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/isolamento & purificação , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Vetores Genéticos , Focalização Isoelétrica , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/biossíntese , Proteínas Tirosina Fosfatases/química , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...