Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Pathog ; 166: 105539, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35447314

RESUMO

Sporotrichosis is a cosmopolitan mycosis caused by pathogenic species of Sporothrix genus, that in Brazil is often acquired by zoonotic transmission involved infected cats with S. brasiliensis. Previous studies showed that the Sporothrix spp. recombinant enolase (rSsEno), a multifunctional protein with immunogenic properties, could be a promising target for vaccination against sporotrichosis in cats. Nevertheless, the considerable sequence identity (62%) of SsEno with its feline counterpart is a great concern. Here, we report the identification in silico, chemical synthesis and biological validation of six peptides of SsEno with low sequence identity to its cat orthologue. All synthesized peptides exhibit B-cell epitopes on the molecular surface of SsEno and proved to be highly reactive with the serum of infected mice with S. brasiliensis and sera of cats with sporotrichosis. Interestingly, our study revealed that anti-peptide sera did not react with the recombinant enolase from Felis catus (cats, rFcEno), thus, may not trigger autoimmune response in these felines if used as a vaccine antigen. The immunization with peptide mixture (PeptMix) formulated with Freund adjuvant (FA), induced high levels of antigen-specific IgG, IgG1 and IgG2b antibodies that conferred protection upon passive transference in infected BALB/c mice with S. brasiliensis. We also observed, that the FA+PeptMix formulation induced a Th1/Th2/Th17 cytokine profile ex vivo, associated with protecting effect against the experimental sporotrichosis. Our results suggest that the six SsEno-derived peptides here evaluated, could be used as safe antigens for the development of vaccine strategies against feline sporotrichosis, whether prophylactic or therapeutic.


Assuntos
Vacinas Fúngicas , Fosfopiruvato Hidratase , Esporotricose , Animais , Brasil , Gatos , Epitopos , Vacinas Fúngicas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/imunologia , Sporothrix/enzimologia , Sporothrix/genética , Esporotricose/prevenção & controle
2.
Front Cell Infect Microbiol ; 12: 1084526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36846549

RESUMO

Introduction: Regulatory T cells (Tregs) have been shown to limit the protective immune response against pathogenic species of the fungus Sporothrix spp, the causal agent of sporotrichosis. However, the specific function of Tregs during vaccination against these fungi is known. Methods: We evaluated the effect of Tregs depletion on the immunogenicity of an experimental recombinant anti-Sporothrix vaccine, using the DEREG mice. In this model, only Foxp3(+) Tregs express eGFP and diphtheria toxin (DT) receptors, and transient Tregs depletion is achieved by DT administration. Results: Tregs depletion enhanced the frequency of specific IFNγ+ T cells (Th1 lymphocytes) and cytokine production after either the first or second vaccine dose. However, depletion of Tregs during the second dose caused greater stimulation of specific Th1 lymphocytes than depletion during the first dose. Similarly, the highest production of IgG, IgG1, and IgG2a anti rSsEno antibody was detected after Tregs depletion during boost immunization compared to the other immunized groups. Importantly, vaccine immunogenicity improvement after Tregs depletion also had an impact on the more efficient reduction of fungal load in the skin and liver after the challenge with S. brasiliensis in an experimental infection model. Interestingly, the reduction in fungal load was greatest in the Tregs depleted group during boosting. Discussion: Our results illustrate that Tregs restrict vaccine-induced immune response and their transient depletion could enhance anti-Sporothrix vaccine immunogenicity. Further studies are required to elucidate whether Tregs depletion may be a way to improve the efficacy of vaccination against Sporothrix spp.


Assuntos
Sporothrix , Linfócitos T Reguladores , Animais , Camundongos , Imunização , Vacinação , Fígado
3.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801683

RESUMO

BACKGROUND: In recent years, there has been great interest in developing molecular adjuvants based on antisense oligonucleotides (ASOs) targeting immunosuppressor pathways with inhibitory effects on regulatory T cells (Tregs) to improve immunogenicity and vaccine efficacy. We aim to evaluate the immunostimulating effect of 2'OMe phosphorothioated Foxp3-targeted ASO in an antifungal adjuvanted recombinant vaccine. METHODS: The uptake kinetics of Foxp3 ASO, its cytotoxicity and its ability to deplete Tregs were evaluated in murine splenocytes in vitro. Groups of mice were vaccinated with recombinant enolase (Eno) of Sporothix schenckii in Montanide Gel 01 adjuvant alone or in combination with either 1 µg or 8 µg of Foxp3 ASO. The titers of antigen-specific antibody in serum samples from vaccinated mice (male C57BL/6) were determined by ELISA (enzyme-linked immunosorbent assay). Cultured splenocytes from each group were activated in vitro with Eno and the levels of IFN-γ and IL-12 were also measured by ELISA. The results showed that the anti-Eno antibody titer was significantly higher upon addition of 8 µM Foxp3 ASO in the vaccine formulation compared to the standard vaccine without ASO. In vitro and in vivo experiments suggest that Foxp3 ASO enhances specific immune responses by means of Treg depletion during vaccination. CONCLUSION: Foxp3 ASO significantly enhances immune responses against co-delivered adjuvanted recombinant Eno vaccine and it has the potential to improve vaccine immunogenicity.


Assuntos
Fatores de Transcrição Forkhead/genética , Inativação Gênica , Imunogenicidade da Vacina , Oligonucleotídeos Antissenso/química , Sporothrix/imunologia , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Farmacêuticos , Animais , Sistema Imunitário , Interferon gama/metabolismo , Subunidade p35 da Interleucina-12/metabolismo , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia , Linfócitos T Reguladores/metabolismo
4.
Immunobiology ; 225(5): 151993, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32962813

RESUMO

The role of regulatory T cells (Tregs) on protective immunity in fungal infections, is controversial. Sporotrichosis is an emerging and worldwide-distributed subcutaneous mycosis caused by various related thermodimorphic fungi of the genus Sporothrix. Previously, we showed an elevated percent of Tregs around 21 days post-infection (dpi) in C57BL/6 mice infected with either Sporothrix schenckii or Sporothrix brasiliensis, but the effect of these cells in the ongoing infection was not evaluated. Here, we aim to characterize the role of Foxp3+ Tregs in a subcutaneous S. schenckii infection model. The flow cytometric analyses showed that S. schenckii infection elicited an expansion of a splenic CD4+Foxp3+ population, including a subset of Helioslow+ after ex vivo stimulation with S. schenckii-heat killed yeast. Depletion of Tregs in DEREG mice revealed a reduction of fungal burden in the skin and systemically in liver and kidneys, associated with enhanced Th1 and Th17 responses. Altogether, our results reveal for the first time that Tregs depletion in ongoing S. schenckii infection improves the protective antifungal immunity and these data suggest that Tregs modulation could be explored as a potential therapeutic strategy in sporotrichosis.


Assuntos
Sporothrix , Esporotricose/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Fatores de Transcrição Forkhead/imunologia , Masculino , Camundongos Endogâmicos C57BL , Baço/citologia
5.
Sci Rep ; 9(1): 17179, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748544

RESUMO

In recent years, research has focused on the immunoreactive components of the Sporothrix schenckii cell wall that can be relevant targets for preventive and therapeutic vaccines against sporotrichosis, an emergent worldwide mycosis. In a previous study, we identified a 47-kDa enolase as an immunodominant antigen in mice vaccinated with an adjuvanted mixture of S. schenckii cell wall proteins. Here, we sought to assess the protective potential of a Sporothrix spp. recombinant enolase (rSsEno) formulated with or without the adjuvant Montanide Pet-GelA (PGA) against the S. brasiliensis infection in mice. Mice that were immunized with rSsEno plus PGA showed increased antibody titters against rSsEno and increased median survival time when challenged with S. brasiliensis as compared with mice that had not been immunized or that were immunized with rSsEno alone. Immunization with rSsEno plus PGA induced a predominantly T-helper 1 cytokine pattern after in vitro stimulation of splenic cells with rSsEno: elevated levels of IFN-γ and IL-2, as well as of other cytokines involved in host defense against sporotrichosis, such as TNF-alpha, IL-6, and IL-4. Furthermore, we show for the first time the presence of enolase in the cell wall of both S. schenckii and S. brasiliensis. As a whole, our results suggest that enolase could be used as a potential antigenic target for vaccinal purposes against sporotrichosis.


Assuntos
Anticorpos Antifúngicos/imunologia , Proteínas Fúngicas/imunologia , Imunidade Celular/imunologia , Fosfopiruvato Hidratase/imunologia , Sporothrix/enzimologia , Sporothrix/imunologia , Esporotricose/prevenção & controle , Sequência de Aminoácidos , Animais , Citocinas/metabolismo , Proteínas Fúngicas/administração & dosagem , Imunização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfopiruvato Hidratase/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Homologia de Sequência , Esporotricose/imunologia , Esporotricose/microbiologia
6.
Microbes Infect ; 21(10): 432-440, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31201931

RESUMO

Sporotrichosis is an emergent subcutaneous mycosis of humans and some animals caused by dimorphic fungi of the genus Sporothrix. The disease occurs worldwide but is endemic or hyperendemic in tropical and subtropical areas. The epidemiology of the disease is changing dramatically, and it is now considered an important zoonosis with high morbidity rates, principally in Brazil, and an opportunistic infection in immunocompromised patients. Due to the limited options currently available to treat invasive fungal infections, including sporotrichosis, and the emergence of drug resistance and toxicity, the development of anti-Sporothrix vaccines has become an area of great interest. This work provides a brief analysis of the feasibility of the development of prophylactic and therapeutic vaccines against sporotrichosis, the main advances achieved to date, future challenges and prospects.


Assuntos
Antígenos de Fungos/imunologia , Vacinas Fúngicas/uso terapêutico , Sporothrix/imunologia , Esporotricose/prevenção & controle , Esporotricose/terapia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/uso terapêutico , Animais , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/imunologia , Humanos , Imunoterapia , Profilaxia Pré-Exposição , Sporothrix/efeitos dos fármacos , Esporotricose/diagnóstico , Esporotricose/imunologia
7.
Pharmaceutics ; 11(3)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934594

RESUMO

The effect of vaccination in fungal strains that suffered changes in their virulence by exposure to environmental contaminants is largely known. Growing reports of resistance to antifungal drugs and the emergence of new highly virulent strains, possibly acquired in the environment, prompt the design of new vaccines able to prevent and combat emerging mycotic diseases. In this study, we evaluated the protective capacity of an enolase-based vaccine and Montanide PetGel A (PGA) as an adjuvant against S. schenckii with increased virulence by exposure to toluene. The adjuvanted vaccine induced a strong specific Th1 response and protective immunity against a challenge with either wildtype or toluene-adapted S. schenckii in Balb/c mice. This study highlights the role of the adjuvant PGA driving the quality of the anti-sporothrix immunity and the key component in the vaccine efficacy.

8.
Fungal Biol ; 122(12): 1163-1170, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30449354

RESUMO

Little is known about the differences in the CD4+ T-cell response induced by Sporothrix schenckii and Sporothrix brasiliensis, the most virulent species that cause sporotrichosis. Here, the helper (Th) and regulatory T cells (Tregs) responses were evaluated comparatively in a murine model of sporotrichosis on days 7, 21 and 35 after subcutaneous infection with either S. schenckii or S. brasiliensis conidia. The fungal load was measured at the site of infection, as well as in the liver and spleen. The Th1/Th17/Tregs responses were analyzed in the spleen, while the level of IL-2, IL-4, IL-6, TNF-alpha, IFN-É£, IL-17A and IL-10 cytokines were measured at the local site of infection on 24 h postinfections and in sera on the indicated days. S. brasiliensis caused a longer-lasting infection in the skin and chronic systemic dissemination associated to more severe granulomatous lesions. Similar Th1/Th1-Th17/Tregs responses were induced by both S. brasiliensis and S. schenckii on 7th and 21st d.p.i but on 35 d.p.i a reduction of Th1 and Th1-Th17 cells, associated to higher values of Th17/Tregs cells was observed only in S. brasiliensis-infected mice. In summary, S. brasiliensis caused a more severe disease associated with sustained Th17/Tregs responses than S. schenckii in mice.


Assuntos
Sporothrix/imunologia , Sporothrix/patogenicidade , Esporotricose/patologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Contagem de Colônia Microbiana , Citocinas/análise , Modelos Animais de Doenças , Granuloma/patologia , Fígado/microbiologia , Camundongos , Pele/patologia , Baço/microbiologia , Células Th1/imunologia , Fatores de Tempo
9.
J Fungi (Basel) ; 4(3)2018 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-30200530

RESUMO

Sporotrichosis is a subcutaneous mycosis affecting humans and other animals. The disease can be acquired by accidental inoculation of the fungus through the skin or through the respiratory system. Sporotrichosis can also be transmitted through bites or scratches by infected cats and more rarely by other animals (zoonotic transmission). Conventional antifungal therapy is especially inefficient in immunocompromised patients, who tend to develop the most severe forms of the disease, thus prompting the search for alternative therapies. Given their antigen-presenting properties, dendritic cells (DCs) have been used in both prophylactic and therapeutic vaccination strategies. Hence, this study aims to assess the use of DCs as a prophylactic tool in sporotrichosis by evaluating the immune profile induced by Sporothrix schenckii cell wall proteins (SsCWP)-stimulated, bone-marrow-derived DCs (BMDCs). Mouse BMDCs were stimulated with SsCWP for 24 h and analyzed for the surface expression of costimulatory molecules and TLR-4, as well as for the secretion of proinflammatory cytokines and IL-10. Following that, activated BMDCs were cocultured with splenocytes for 72 h and had the same cytokines measured in the supernatant. SsCWP-stimulated BMDCs showed higher expression of CD80, CD86, and CD40, but not TLR-4, and higher secretion of IL-6, IL-17A, and TNF. On the other hand, higher levels of IFN-γ, IL-10, and IL-2 were found in the supernatants of the coculture as compared with the BMDCs alone; TNF secretion was almost completely abrogated, whereas IL-6 was only partially inhibited and IL-17A was unaffected. Our results thus suggest that SsCWP-stimulated BMDCs are able to induce a Th1-prone cytokine profile which is known to be protective against other fungal diseases. This result could lead to studies which evaluate the development of prophylactic and/or therapeutic DC-based tools against sporotrichosis.

10.
Immunology ; 155(4): 467-476, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30030839

RESUMO

Natural killer (NK) cells are one of the first cell types to enter inflammation sites and have been historically known as key effector cells against tumours and viruses; now, accumulating evidence shows that NK cells are also capable of direct in vitro activity and play a protective role against clinically important fungi in vivo. However, our understanding of NK cell development, maturation and activation in the setting of fungal infections is preliminary at best. Sporotrichosis is an emerging worldwide-distributed subcutaneous mycosis endemic in many countries, affecting humans and other animals and caused by various related thermodimorphic Sporothrix species, whose prototypical member is Sporothrix schenckii. We show that following systemic infection of BALB/c mice with S. schenckii sensu stricto, NK cells displayed a more mature phenotype as early as 5 days post-infection as judged by CD11b/CD27 expression. At 10 days post-infection, NK cells had increased expression of CD62 ligand (CD62L) and killer cell lectin-like receptor subfamily G member 1 (KLRG1), but not of CD25 or CD69. Depletion of NK cells with anti-asialo GM1 drastically impaired fungal clearance, leading to a more than eightfold increase in splenic fungal load accompanied by heightened systemic inflammation, as shown by augmented production of the pro-inflammatory cytokines tumour necrosis factor-α, interferon-γ and interleukin-6, but not interleukin-17A, in the spleen and serum. Our study is, to the best of our knowledge, the first to demonstrate that a fungal infection can drive NK cell maturation in vivo and that such cells are pivotal for in vivo protection against S. schenckii.


Assuntos
Células Matadoras Naturais/imunologia , Sporothrix/imunologia , Esporotricose/imunologia , Animais , Antígenos CD/sangue , Antígenos de Diferenciação de Linfócitos T/sangue , Antígenos CD11/sangue , Diferenciação Celular/imunologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Subunidade alfa de Receptor de Interleucina-2/sangue , Interleucina-6/biossíntese , Células Matadoras Naturais/citologia , Selectina L/sangue , Lectinas Tipo C/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptores Imunológicos/sangue , Esporotricose/microbiologia , Esporotricose/patologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/sangue , Fator de Necrose Tumoral alfa/biossíntese
11.
Med Mycol ; 56(6): 711-722, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29087533

RESUMO

This report describes a model of host resistance for Sporothrix schenckii, an opportunistic fungi in immunosuppressed mice with cyclophosphamide (CY) to be used in studies of immunotoxicology and immunopharmacology. Two doses of CY were administered intraperitoneally: 200 mg/kg and a booster of 150 mg/kg at 9-day intervals. Three days after the first dose of CY the animals were infected subcutaneously with 1.8 × 108 yeast/ml (S. schenckii ATCC 16345). At 7 and 14 days post-infection, the animals were euthanized and analyzed the fungal load by unit forming colony count in the spleen and popliteal lymph nodes. The relative weight of thymus and spleen, splenic index, the frequency of T and B cells in spleen by flow cytometry, the hind paw inflammation index and cytokine (interleukin [IL]-17, IL-10, and interferon [IFN]-γ) profile were measured. Histopathological studies of the spleen and the hind paw were also assessed. The immunosuppression status was confirmed at the evaluated days by reduction of relative weight of thymus, reduction of the splenic white pulp, the population of B and T lymphocytes, and the cytokine profile in the treated mice with CY in comparison with nontreated groups, associated to higher fungal load in hind paw and spleen in the infected mice. The described model reveals an increasing in susceptibility to infection and severity when associated with immunosuppression. This model can serve as a reference for studies of S. schenckii host resistance in pharmaceutical and toxicological studies.


Assuntos
Sporothrix/imunologia , Esporotricose/imunologia , Animais , Contagem de Colônia Microbiana , Ciclofosfamida/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Imunossupressores/administração & dosagem , Linfonodos/imunologia , Linfonodos/microbiologia , Linfonodos/patologia , Subpopulações de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Baço/imunologia , Baço/microbiologia , Baço/patologia , Esporotricose/microbiologia , Esporotricose/patologia
12.
Vaccine ; 35(34): 4430-4436, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28687406

RESUMO

Sporotrichosis is an important zoonosis in Brazil and the most frequent subcutaneous mycosis in Latin America, caused by different Sporothrix species. Currently, there is no effective vaccine available to prevent this disease. In this study, the efficacy and toxicity of the adjuvant Montanide™ Pet Gel A (PGA) formulated with S. schenckii cell wall proteins (ssCWP) was evaluated and compared with that of aluminum hydroxide (AH). Balb/c mice received two subcutaneous doses (1st and 14th days) of either the unadjuvanted or adjuvanted vaccine candidates. On the 21st day, anti-ssCWP antibody levels (ELISA), the phagocytic index, as well as the ex vivo release of IFN-γ, IL-4, and IL-17 by splenocytes and IL-12 by peritoneal macrophages were assessed. Cytotoxicity of the vaccine formulations was evaluated in vitro and by histopathological analysis of the inoculation site. Both adjuvanted vaccine formulations increased anti-ssCWP IgG, IgG1, IgG2a, and IgG3 levels, although IgG2a levels were higher in response to PGA+CWP100, probably contributing to the increase in S. schenckii yeast phagocytosis by macrophages in the opsonophagocytosis assay when using serum from PGA+CWP100-immunized mice. Immunization with AH+CWP100 led to a mixed Th1/Th2/Th17 ex vivo cytokine release profile, while PGA+CWP100 stimulated a preferential Th1/Th2 profile. Moreover, PGA+CWP100 was less cytotoxic in vitro, caused less local toxicity and led to a similar reduction in fungal load in the liver and spleen of S. schenckii- or S. brasiliensis-challenged mice as compared with AH+CWP100. These results suggest that PGA may be an effective and safe adjuvant for a future sporotrichosis vaccine.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio/imunologia , Vacinas Fúngicas/efeitos adversos , Vacinas Fúngicas/imunologia , Sporothrix/imunologia , Esporotricose/prevenção & controle , Adjuvantes Imunológicos/toxicidade , Hidróxido de Alumínio/toxicidade , Animais , Anticorpos Antifúngicos/biossíntese , Anticorpos Antifúngicos/sangue , Anticorpos Antifúngicos/imunologia , Brasil , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/química , Imunidade Celular , Imunogenicidade da Vacina , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Esporotricose/imunologia , Equilíbrio Th1-Th2 , Vacinação
13.
Int J Toxicol ; 35(6): 627-633, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27733445

RESUMO

Local reactions are the most frequent adverse event associated with vaccines. Adjuvants are major constituents of many vaccines and they are frequently involved in these reactions, associated with their irritating effect and the stimulation of local inflammation. The hen's egg test on chorioallantoic membrane (HET-CAM) is an alternative toxicological method widely used to determine ocular irritation potential, but very few studies have demonstrated the utility of this method for assessing the irritant properties of vaccine adjuvants. In this work, known/experimental adjuvants were evaluated by both HET-CAM and an in vivo local toxicity study in mice to compare irritation scores to determine whether there was a correlation (Pearson test). Based on these data (r = 0.9034; P < 0.0001), the HET-CAM assay can be used as an alternate method for the prediction of the local toxicity potential of adjuvant candidates to be used in vaccines.


Assuntos
Adjuvantes Imunológicos/toxicidade , Membrana Corioalantoide/efeitos dos fármacos , Irritantes/toxicidade , Alternativas aos Testes com Animais , Animais , Bioensaio , Galinhas , Feminino , Camundongos Endogâmicos BALB C , Pele/efeitos dos fármacos , Vacinas
14.
FEMS Yeast Res ; 16(7)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634774

RESUMO

Paracoccidioides spp., which are temperature-dependent dimorphic fungi, are responsible for the most prevalent human systemic mycosis in Latin America, the paracoccidioidomycosis. The aim of this study was to characterise the involvement of elongation factor Tu (EF-Tu) in Paracoccidioides brasiliensis-host interaction. Adhesive properties were examined using recombinant PbEF-Tu proteins and the respective polyclonal anti-rPbEF-Tu antibody. Immunogold analysis demonstrated the surface location of EF-Tu in P. brasiliensis. Moreover, PbEF-Tu was found to bind to fibronectin and plasminogen by enzyme-linked immunosorbent assay, and it was determined that the binding to plasminogen is at least partly dependent on lysine residues and ionic interactions. To verify the participation of EF-Tu in the interaction of P. brasiliensis with pneumocytes, we blocked the respective protein with an anti-rPbEF-Tu antibody and evaluated the consequences on the interaction index by flow cytometry. During the interaction, we observed a decrease of 2- and 3-fold at 8 and 24 h, respectively, suggesting the contribution of EF-Tu in fungal adhesion/invasion.


Assuntos
Interações Hospedeiro-Patógeno , Paracoccidioides/enzimologia , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Virulência/metabolismo , Células Epiteliais Alveolares/microbiologia , Adesão Celular , Linhagem Celular , Fibronectinas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Paracoccidioides/fisiologia , Plasminogênio/metabolismo , Ligação Proteica
15.
Mycopathologia ; 181(3-4): 207-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26603044

RESUMO

The response of hydrogen peroxide (H2O2) and cytokines during an experimental sporotrichosis in male Swiss mice was assessed over a period of 10 weeks by monitoring macrophage activation challenged with exoantigen (ExoAg) from the fungus Sporothrix schenckii. The studied endpoints were: H2O2 production, fungal burden at spleen, apoptosis in peritoneal macrophages, and IL-1ß, IL-6, IL-2, IL-10 production. During the two first weeks of infection was observed low burden of yeast in spleen and high response of H2O2, IL-2, and IL-1ß. The weeks of highest fungal burden (fourth-sixth) coincided with major apoptosis in peritoneal macrophages, normal production of IL-6 and lower production of H2O2, IL-2, and IL-1ß, suggesting a role for these three last in the early control of infection. On the other hand, IL-1ß (but not IL-6) was recovered since the sixth week, suggesting a possible role in the late phase of infection, contributing to the fungal clearance in conjunction with the specific mechanisms. The IL-10 was elevated until the sixth, principally in the second week. These results evidences that ExoAg is involved in the host immune modulation, influencing the S. Schenckii virulence, and its role is related with the time of the infection in the model used.


Assuntos
Antígenos de Fungos/imunologia , Peróxido de Hidrogênio/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-2/metabolismo , Sporothrix/imunologia , Esporotricose/imunologia , Animais , Apoptose/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Óxido Nítrico/metabolismo , Esporotricose/microbiologia , Esporotricose/patologia
16.
Immunobiology ; 221(2): 300-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26547105

RESUMO

Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing.


Assuntos
Anticorpos Antifúngicos/biossíntese , Parede Celular/imunologia , Vacinas Fúngicas/administração & dosagem , Imunidade Humoral/efeitos dos fármacos , Sporothrix/imunologia , Esporotricose/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Animais , Adesão Celular , Parede Celular/química , Fibroblastos/imunologia , Proteínas Fúngicas/administração & dosagem , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/isolamento & purificação , Vacinas Fúngicas/química , Vacinas Fúngicas/imunologia , Soros Imunes/química , Imunidade Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeo Hidrolases/administração & dosagem , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/isolamento & purificação , Fagocitose/efeitos dos fármacos , Fosfopiruvato Hidratase/administração & dosagem , Fosfopiruvato Hidratase/imunologia , Fosfopiruvato Hidratase/isolamento & purificação , Sporothrix/química , Sporothrix/efeitos dos fármacos , Esporotricose/imunologia , Esporotricose/microbiologia , Esporotricose/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vacinação
17.
Immunobiology ; 220(8): 985-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25776919

RESUMO

The discovery of Th17 cells, along with many other Th cell subsets in the recent years, has expanded the Th1/Th2 paradigm that had persisted since its proposition by Mosmann in 1986. Defined by the characteristic expression of the transcription factor retinoic-related orphan receptor γt (RORγt) and production of IL-17A (IL-17), Th17 cells are powerful inducers of tissue inflammation with a recognized role against extracellular bacteria and fungi. Despite this, the interest in their study came from the pivotal role they play in the development and maintenance of major chronic inflammatory conditions such as multiple sclerosis, rheumatoid arthritis and Crohn's disease, hence they have been the target of promising new anti-Th17 therapies. Accordingly, the identification of opportunistic pathogens whose clearance relies on the Th17 response is of huge prophylactic importance. As shown here for the first time, this applies to Sporothrix schenckii, a thermo-dimorphic fungus and the causative agent of sporotrichosis. Our results show that both Th17 and Th1/Th17 mixed cells are developed during the S. schenckii systemic mice infection, which also leads to augmented production of IL-17 and IL-22. Also, by using an antibody-mediated IL-23 depletion model, we further demonstrate that optimal fungal clearance, but not survival, depends on an intact Th17 response.


Assuntos
Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Sporothrix/imunologia , Esporotricose/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Células Cultivadas , Modelos Animais de Doenças , Humanos , Interleucina-23/efeitos dos fármacos , Interleucina-23/imunologia , Interleucinas/metabolismo , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Esporotricose/terapia , Células Th17/microbiologia , Interleucina 22
18.
Med Mycol ; 53(1): 69-89, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25362733

RESUMO

Mycoses are gaining increasing attention in modern medicine because of the increase in diseases associated with opportunistic fungal infections. Despite the recognized role of the immune system in the control of fungal infections, no antifungal vaccines are currently licensed for use in humans. However, numerous vaccine candidates are being developed in many laboratories, as proof of the renewed interest in integrating or replacing chemotherapy with vaccines to reduce antibiotic use and consequently limit drug resistance and toxicity. In the effort to use safer and simpler fungal antigens for vaccinations, adjuvants have become relevant as immunostimulators to elicit successful protective immune responses. To address the relevant role of adjuvants as determinants in the balance of vaccine efficacy and safety, an updated and critical review of the adjuvants used in preclinical antifungal vaccines is presented, and prospective trends are addressed. Selected recent papers and other historically relevant and innovative strategies using adjuvants in experimental fungal vaccines are highlighted.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Vacinas Fúngicas/imunologia , Micoses/prevenção & controle , Descoberta de Drogas/tendências , Vacinas Fúngicas/administração & dosagem , Humanos , Micoses/imunologia
19.
Int Immunopharmacol ; 20(1): 170-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24607449

RESUMO

Vaccine safety is a topic of concern for the treated individual, the family, the health care personnel, and the others involved in vaccination programs as recipients or providers. Adjuvants are necessary components to warrant the efficacy of vaccines, however the overstimulation of the immune system is also associated with adverse effects. Local reactions are the most frequent manifestation of toxicity induced by adjuvanted vaccines and, with the exception of the acute phase response (APR), much less is known about the systemic reactions that follow vaccination. Their low frequency or subclinical expression meant that this matter has been neglected. In this review, various systemic reactions associated with immune stimulation will be addressed, including: APR, hypersensitivity, induction or worsening of autoimmune diseases, modification of hepatic metabolism and vascular leak syndrome (VLS), with an emphasis on the mechanism involved. Finally, the authors analyze the current focus of discussion about vaccine safety and opportunities to improve the design of new adjuvanted vaccines in the future.


Assuntos
Adjuvantes Imunológicos/efeitos adversos , Vacinas/efeitos adversos , Adjuvantes Imunológicos/administração & dosagem , Animais , Vias de Administração de Medicamentos , Humanos , Vacinas/administração & dosagem
20.
Rev Peru Med Exp Salud Publica ; 30(3): 441-5, 2013 Jul.
Artigo em Espanhol | MEDLINE | ID: mdl-24100820

RESUMO

The objective of the study was to determine the T-cell epitopes of four of the most frequent antigenic proteins of the outer membrane of Neisseria meningitidis B, and to identify the most relevant sites for molecular mimicry with T-cell epitopes in humans. In order to do so, an in silico study -a type of study that uses bioinformatic tools- was carried out using SWISS-PROT/TrEMBL, SYFPEITHI and FASTA databases, which helped to determine the protein sequences, CD4 and CD8 T-cell epitope prediction, as well as the molecular mimicry with humans, respectively. Molecular similarity was found in several human proteins present in different organs and tissues such as: liver, skin and epithelial tissues, brain, lymphatic system and testicles. Of these, those found in testicles were more similar, showing the highest frequency of mimetic sequences. This finding shed light on the success of N. meningitidis B to colonize human tissues and the failure of certain vaccines against this bacterium, and it even helps to explain possible autoimmune reactions associated with the infection or vaccination.


Assuntos
Antígenos de Bactérias/imunologia , Simulação por Computador , Epitopos de Linfócito T/imunologia , Mimetismo Molecular , Neisseria meningitidis Sorogrupo B/imunologia , Proteoma , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...