Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 8(6): 1779-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24126688

RESUMO

The axonal type of Charcot­Marie­Tooth (CMT) disorders is genetically heterogeneous, therefore the causal mutation is unlikely to be observed, even in clinically well characterized patients. Mitofusin­2 (MFN2) gene mutations are the most frequent cause of axonal CMT disorders in a number of populations. There are two phenotypes; early onset, which is severe and late onset, which is a milder phenotype. A cohort of 139 unrelated Czech patients with axonal neuropathy was selected for sequencing and multiplex ligation-dependent probe amplification analysis (MLPA) testing of the MFN2 gene. A total of 11 MFN2 mutations were detected, with eight pathogenic mutations and three potentially rare benign polymorphisms. MLPA testing in 64 unrelated patients did not detect any exon duplication or deletion. The frequency of the pathogenic mutations detected in Czech hereditary motor and sensory neuropathy type II (HMSN II) patients was 7.2%. Early onset was more frequent among pathogenic mutation cases. Therefore we propose to examine the MFN2 gene mainly in patients with early and severe axonal CMT.


Assuntos
Doença de Charcot-Marie-Tooth/genética , GTP Fosfo-Hidrolases/genética , Proteínas Mitocondriais/genética , Taxa de Mutação , Mutação/genética , República Tcheca , Éxons/genética , Família , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
2.
Am J Hum Genet ; 86(6): 892-903, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20493460

RESUMO

Genomic rearrangements involving the peripheral myelin protein gene (PMP22) in human chromosome 17p12 are associated with neuropathy: duplications cause Charcot-Marie-Tooth disease type 1A (CMT1A), whereas deletions lead to hereditary neuropathy with liability to pressure palsies (HNPP). Our previous studies showed that >99% of these rearrangements are recurrent and mediated by nonallelic homologous recombination (NAHR). Rare copy number variations (CNVs) generated by nonrecurrent rearrangements also exist in 17p12, but their underlying mechanisms are not well understood. We investigated 21 subjects with rare CNVs associated with CMT1A or HNPP by oligonucleotide-based comparative genomic hybridization microarrays and breakpoint sequence analyses, and we identified 17 unique CNVs, including two genomic deletions, ten genomic duplications, two complex rearrangements, and three small exonic deletions. Each of these CNVs includes either the entire PMP22 gene, or exon(s) only, or ultraconserved potential regulatory sequences upstream of PMP22, further supporting the contention that PMP22 is the critical gene mediating the neuropathy phenotypes associated with 17p12 rearrangements. Breakpoint sequence analysis reveals that, different from the predominant NAHR mechanism in recurrent rearrangement, various molecular mechanisms, including nonhomologous end joining, Alu-Alu-mediated recombination, and replication-based mechanisms (e.g., FoSTeS and/or MMBIR), can generate nonrecurrent 17p12 rearrangements associated with neuropathy. We document a multitude of ways in which gene function can be altered by CNVs. Given the characteristics, including small size, structural complexity, and location outside of coding regions, of selected rare CNVs, their identification remains a challenge for genome analysis. Rare CNVs may potentially represent an important portion of "missing heritability" for human diseases.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Cromossomos Humanos Par 17 , Variações do Número de Cópias de DNA , Proteínas da Mielina/genética , Paralisia/genética , Translocação Genética , Hibridização Genômica Comparativa , Deleção de Genes , Duplicação Gênica , Neuropatia Hereditária Motora e Sensorial , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...