Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0295887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820334

RESUMO

In recent years, much of the emphasis for transformation of introductory STEM courses has focused on "active learning", and while this approach has been shown to produce more equitable outcomes for students, the construct of "active learning" is somewhat ill-defined and is often used as a "catch-all" that can encompass a wide range of pedagogical techniques. Here we present an alternative approach for how to think about the transformation of STEM courses that focuses instead on what students should know and what they can do with that knowledge. This approach, known as three-dimensional learning (3DL), emerged from the National Academy's "A Framework for K-12 Science Education", which describes a vision for science education that centers the role of constructing productive causal accounts for phenomena. Over the past 10 years, we have collected data from introductory biology, chemistry, and physics courses to assess the impact of such a transformation on higher education courses. Here we report on an analysis of video data of class sessions that allows us to characterize these sessions as active, 3D, neither, or both 3D and active. We find that 3D classes are likely to also involve student engagement (i.e. be active), but the reverse is not necessarily true. That is, focusing on transformations involving 3DL also tends to increase student engagement, whereas focusing solely on student engagement might result in courses where students are engaged in activities that do not involve meaningful engagement with core ideas of the discipline.


Assuntos
Aprendizagem Baseada em Problemas , Estudantes , Humanos , Aprendizagem Baseada em Problemas/métodos , Ciência/educação , Aprendizagem , Currículo
2.
PLoS One ; 15(6): e0234640, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32544166

RESUMO

The importance of improving STEM education is of perennial interest, and to this end, the education community needs ways to characterize transformation efforts. Three-dimensional learning (3DL) is one such approach to transformation, in which core ideas of the discipline, scientific practices, and crosscutting concepts are combined to support student development of disciplinary expertise. We have previously reported on an approach to the characterization of assessments, the Three-Dimensional Learning Assessment Protocol (3D-LAP), that can be used to identify whether assessments have the potential to engage students in 3DL. Here we present the development of a companion, the Three-Dimensional Learning Observation Protocol (3D-LOP), an observation protocol that can reliably distinguish between instruction that has potential for engagement with 3DL and instruction that does not. The 3D-LOP goes beyond other observation protocols, because it is intended not only to characterize the pedagogical approaches being used in the instructional environment, but also to identify whether students are being asked to engage with scientific practices, core ideas, and crosscutting concepts. We demonstrate herein that the 3D-LOP can be used reliably to code for the presence of 3DL; further, we present data that show the utility of the 3D-LOP in differentiating between instruction that has the potential to promote 3DL from instruction that does not. Our team plans to continue using this protocol to evaluate outcomes of instructional transformation projects. We also propose that the 3D-LOP can be used to support practitioners in developing curricular materials and selecting instructional strategies to promote engagement in three-dimensional instruction.


Assuntos
Aprendizagem , Ciência/educação , Universidades/normas , Currículo , Avaliação Educacional , Humanos , Estudantes
3.
Sci Adv ; 4(10): eaau0554, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30397646

RESUMO

We evaluate the impact of an institutional effort to transform undergraduate science courses using an approach based on course assessments. The approach is guided by A Framework for K-12 Science Education and focuses on scientific and engineering practices, crosscutting concepts, and core ideas, together called three-dimensional learning. To evaluate the extent of change, we applied the Three-dimensional Learning Assessment Protocol to 4 years of chemistry, physics, and biology course exams. Changes in exams differed by discipline and even by course, apparently depending on an interplay between departmental culture, course organization, and perceived course ownership, demonstrating the complex nature of transformation in higher education. We conclude that while transformation must be supported at all organizational levels, ultimately, change is controlled by factors at the course and departmental levels.

4.
CBE Life Sci Educ ; 16(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29196430

RESUMO

Recent calls for improvement in undergraduate education within STEM (science, technology, engineering, and mathematics) disciplines are hampered by the methods used to evaluate teaching effectiveness. Faculty members at research universities are commonly assessed and promoted mainly on the basis of research success. To improve the quality of undergraduate teaching across all disciplines, not only STEM fields, requires creating an environment wherein continuous improvement of teaching is valued, assessed, and rewarded at various stages of a faculty member's career. This requires consistent application of policies that reflect well-established best practices for evaluating teaching at the department, college, and university levels. Evidence shows most teaching evaluation practices do not reflect stated policies, even when the policies specifically espouse teaching as a value. Thus, alignment of practice to policy is a major barrier to establishing a culture in which teaching is valued. Situated in the context of current national efforts to improve undergraduate STEM education, including the Association of American Universities Undergraduate STEM Education Initiative, this essay discusses four guiding principles for aligning practice with stated priorities in formal policies: 1) enhancing the role of deans and chairs; 2) effectively using the hiring process; 3) improving communication; and 4) improving the understanding of teaching as a scholarly activity. In addition, three specific examples of efforts to improve the practice of evaluating teaching are presented as examples: 1) Three Bucket Model of merit review at the University of California, Irvine; (2) Evaluation of Teaching Rubric, University of Kansas; and (3) Teaching Quality Framework, University of Colorado, Boulder. These examples provide flexible criteria to holistically evaluate and improve the quality of teaching across the diverse institutions comprising modern higher education.


Assuntos
Cultura , Políticas , Pesquisa/educação , Recompensa , Ensino , Universidades , Currículo , Feminino , Humanos , Masculino , Modelos Educacionais , Estudantes
5.
PLoS One ; 11(9): e0162333, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27606671

RESUMO

Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of "three-dimensional learning" is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not.


Assuntos
Avaliação Educacional/métodos , Aprendizagem , Ciência/educação , Universidades , Biologia/educação , Química/educação , Currículo , Engenharia/educação , Física/educação , Reprodutibilidade dos Testes
7.
J Phys Chem B ; 117(50): 15926-34, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24229047

RESUMO

The dynamic phosphorescence Stokes shift (PSS) response of Zn(II)-substituted cytochrome c (ZnCytc) was detected using the time-resolved phosphorescence spectrum of the intrinsic Zn(II)-porphyrin chromophore, which senses the motions of the surrounding protein and hydration shell. The phosphorescence spectrum of ZnCytc exhibits resolved vibronic structure arising from in-plane deformations of the porphyrin macrocycle, as is also observed in the absorption and fluorescence spectra. As the emission time increases, the phosphorescence spectrum shifts to the red without incurring a significant change in vibronic structure or line shape, so the shift arises from dynamic solvation, the reorganizational motions of the protein and solvent that occur in response to formation of the first excited triplet state. A correlation time of 294 ± 14 µs was obtained from a single-exponential fit to the time dependence of the mean emission frequency of the T(0,0) peak in the phosphorescence spectrum. This time scale is consistent with a diffusive sampling of the native structure's minimum due to global or collective conformational fluctuations. We suggest that studies of the PSS response sensed in proteins by an intrinsic probe will be informative of protein and hydration-shell dynamics over the microsecond-millisecond time regimes associated with biological function.


Assuntos
Citocromos c/química , Espectrometria de Fluorescência/métodos , Zinco/química , Cristalografia por Raios X , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...