Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892216

RESUMO

The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23FS*, V31KS*, and R44KS*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of S. aureus, along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including S. aureus (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and B. cereus (strain IP 5832), and Gram-negative bacteria such as P. aeruginosa (ATCC 28753 and 2943 strains) and E. coli (MG1655 and K12 strains). Peptides R23FS*, V31KS*, and R44KS* exhibited antimicrobial activity comparable to gentamicin and meropenem against all tested bacteria at concentrations ranging from 24 to 48 µM. The peptides showed a stronger antimicrobial effect against B. cereus. Notably, peptide R44KS* displayed high efficacy compared to peptides R23FS* and V31KS*, particularly evident at lower concentrations, resulting in significant inhibition of bacterial growth. Furthermore, modified peptides V31KS* and R44KS* demonstrated enhanced inhibitory effects on bacterial growth across different strains compared to their unmodified counterparts V31KS and R44KS. These results highlight the potential of integrating cell-penetrating peptides, amyloidogenic fragments, and amino acid residue modifications to advance the innovation in the field of antimicrobial peptides, thereby increasing their effectiveness against a broad spectrum of pathogens.


Assuntos
Peptídeos Antimicrobianos , Peptídeos Penetradores de Células , Testes de Sensibilidade Microbiana , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Aminoácidos/química , Desenho de Fármacos , Proteínas Amiloidogênicas/química
2.
Microorganisms ; 11(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37317304

RESUMO

Antibiotic resistance is a significant and pressing issue in the medical field, as numerous strains of infectious bacteria have become resistant to commonly prescribed antibiotics. Staphylococcus aureus is a bacterium that poses a grave threat, as it is responsible for a large number of nosocomial infections and has high mortality rates worldwide. Gausemycin A is a new lipoglycopeptide antibiotic that has considerable efficacy against multidrug-resistant S. aureus strains. Although the cellular targets of gausemycin A have been previously identified, detailing the molecular processes of action is still needed. We performed gene expression analysis to identify molecular mechanisms that may be involved in bacterial resistance to gausemycin A. In the present study, we observed that gausemycin A-resistant S. aureus in the late-exponential phase showed an increased expression of genes involved in cell wall turnover (sceD), membrane charge (dltA), phospholipid metabolism (pgsA), the two-component stress-response system (vraS), and the Clp proteolytic system (clpX). The increased expression of these genes implies that changes in the cell wall and cell membrane are essential for the bacterial resistance to gausemycin A. In the stationary phase, we observed a decrease in the expression of genes involved in the phospholipid metabolism (mprF) and Clp proteolytic system (clpX).

3.
Plants (Basel) ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771744

RESUMO

Pesticides are widely used in agriculture as a pest control strategy. Despite the benefits of pesticides on crop yields, the persistence of chemical residues in soil has an unintended impact on non-targeted microorganisms. In the present study, we evaluated the potential adverse effects of a mixture of fungicides (difenoconazole, epoxiconazole, and kresoxim-methyl) on soil fungal and bacterial communities, as well as the manifestation of wheat diseases. In the fungicide-treated soil, the Shannon indices of both fungal and bacterial communities decreased, whereas the Chao1 indices did not differ compared to the control soil. Among bacterial taxa, the relative abundances of Arthrobacter and Sphingomonas increased in fungicide-treated soil due to their ability to utilize fungicides and other toxic compounds. Rhizopus and plant-beneficial Chaetomium were the dominant fungal genera, with their prevalence increasing by 2-4 times in the fungicide-treated soil. The genus Fusarium, which includes phytopathogenic species, which are notably responsible for root rot, was the most abundant taxon in each of the two conditions but its relative abundance was two times lower in fungicide-treated soils, consistent with a lower level of disease incidence in plants. The prediction of metabolic pathways revealed that the soil bacterial community had a high potential for degrading various pollutants, and the soil fungal community was in a state of recovery after the application of quinone outside inhibitor (QoI) fungicides. Fungicide-treated soil was characterized by an increase in soil microbial carbon, compared with the control soil. Collectively, the obtained results suggest that the application of difenoconazole, epoxiconazole, and kresoxim-methyl is an effective approach for pest control that does not pose a hazard for the soil ecosystem in the short term. However, it is necessary to carry out additional sampling to take into account the spatio-temporal impact of this fungicide mixture on the functional properties of the soil.

4.
J Fungi (Basel) ; 8(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36294582

RESUMO

The dimorphic fungus Candida albicans is one of the most important opportunistic pathogens for humankind. The use of fungicides against Candida could be associated with sub-inhibitory effects, which are referred to as fungal stress responses and are undesirable for the host. In this work, we investigated the antifungal action of 2,4-diacetylphloroglucinol (2,4-DAPG) against Candida albicans ATCC 10231 with a focus on their biofilm-forming ability. We found that 2,4-DAPG was able to reduce the ability of Candida cells to form biofilms, but complete inhibition and eradication effects were not achieved. Furthermore, C. albicans cells in the adherent state were characterized by reduced susceptibility to 2,4-DAPG compared to planktonic cells. The investigation of the mechanisms that could explain the antibiofilm action of 2,4-DAPG revealed a reduction in the cell`s surface hydrophobicity and the inhibition of the yeast-to-hyphae transition. The inhibition of the Candida cells filamentation was accompanied by an increase in the expression of the NRG1 gene, which is a negative regulator of hyphal development. In addition, we microscopically visualized the treated biofilms and revealed numerous channels that were decorated with particles and localized on the hyphae. We assumed that these hyphal structures could be associated with the secretion of aspartyl proteases (Sap). The performed assessments revealed an increase in the activity of Sap, which was accompanied by an increase in the expression of the sap2 and sap4 genes. The antifungal action of 2,4-DAPG is known to be associated with affecting the permeability of cellular structures, which leads to H+ATPase malfunction and the disruption of mitochondrial respiration. The subsequent cytosol acidification and generation of ROS trigger the inhibition of Candida filamentation and activation of Sap production. The introduction of antioxidant Trolox simultaneously with 2,4-DAPG leads to a reduction in Sap production. Collectively, the obtained data indicate new aspects of the interaction of fungal cells with 2,4-DAPG, an antimicrobial metabolite of Pseudomonas spp.

5.
Front Microbiol ; 13: 963979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246291

RESUMO

Gausemycin A is the first member of the novel lipoglycopeptides family produced by Streptomyces roseoflavus INA-Ac-5812. Gausemycin A has a pronounced bactericidal activity against methicillin-resistant Staphylococcus aureus. However, the ability of S. aureus to be resistant to gausemycin A has not been investigated yet. Using serial passaging, we have obtained the resistant variant S. aureus 5812R, which is 80 times more resistant compared to the parent strain. Susceptibility testing of S. aureus 5812R revealed the acquisition of cross-resistance to daptomycin, cefazolin, tetracycline, and gentamicin, while the resistance to vancomycin, nisin, and ramoplanin was absent. Whole genome sequencing revealed single nucleotide polymorphism (SNP) and deletions in S. aureus 5812R, among which are genes encoding efflux pump (sepA), the two-component Kdp system (kdpE), and the component of isoprenoid biosynthesis pathway (hepT). Phenotypically, S. aureus 5812R resembles a small-colony variant, as it is slow-growing, forms small colonies, and is deficient in pigments. Profiling of fatty acids (FA) composition constituting the cytoplasmic membrane of S. aureus 5812R revealed the prevalence of anteiso-branched FA, while straight FA was slightly less present. The evidence also showed that the gausemycin A-resistant strain has increased expression of the cls2 gene of the cardiolipin synthase. The performed checkerboard assay pointed out that the combination of gausemycin A and ciprofloxacin showed a synergistic effect against S. aureus 5812R.

6.
World J Microbiol Biotechnol ; 38(11): 184, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35972587

RESUMO

Bacterial intercellular communication mediated by small diffusible molecules, known as quorum sensing (QS), is a common mechanism for regulating bacterial colonisation strategies and survival. Influence on QS by plant-derived molecules is proposed as a strategy for combating phytopathogens by modulating their virulence. This work builds upon other studies that have revealed plant-derived QS inhibitors extracted from oak bark (Quercus sp.). It was found that co-incubation of Pectobacterium carotovorum VKM-B-1247 with oak bark extract (OBE) reduced the production of acyl-HSL. This was accompanied by a dose-dependent decrease in the bacterial cellulolytic and protease activity. At the transcriptomic level, the OBE treatment suppressed the main QS-related genes expR/expI. Potato tubers pre-treated with OBE showed resistance to a manifestation of soft-rot symptoms. Analysis of the component composition of the OBE identified several biologically active molecules, such as n-hexadecanoic acid, 2,6-di-tert-butyl-4-methylphenol, butylated hydroxytoluene (BHT), gamma-sitosterol, lupeol, and others. Molecular docking of the binding energy between identified molecules and homology models of LuxR-LuxI type proteins allow to identify potential inhibitors. Collectively, obtained results figure out great potential of widely distributed oak-derived plant material for bacterial control during storage of potato.


Assuntos
Pectobacterium , Quercus , Solanum tuberosum , Proteínas de Bactérias/metabolismo , Simulação de Acoplamento Molecular , Pectobacterium/genética , Pectobacterium/metabolismo , Pectobacterium carotovorum/metabolismo , Casca de Planta/metabolismo , Percepção de Quorum/genética , Solanum tuberosum/microbiologia , Virulência/genética
7.
Biomolecules ; 11(1)2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375656

RESUMO

2,4-Diacetylphloroglucinol (2,4-DAPG) is a well-known bacterial secondary metabolite, however, its mechanism of inhibitory and subinhibitory action on bacterial cells is still poorly understood. The mechanism of 2,4-DAPG action on model bacterial strains was investigated using fluorescent spectroscopy and the action of the antibiotic was found to involve a rapid increase in membrane permeability that was accompanied by a reduction in its viability in nutrient-poor medium. At the same time, antibacterial action in nutrient-rich medium developed for several hours. Atomic force microscopy demonstrated time-dependent disturbances in the outer membrane of Escherichia coli when exposed to 2,4-DAPG, while Staphylococcusaureus cells have been visualized with signs of intracellular leakage. In addition, 2,4-DAPG inhibited the metabolic activity of S. aureus and E. coli bacterial cells in mature biofilms. Observed differences in the antibiofilm activity were dependent upon antibiotic concentration. The intracellular targets of the action of 2,4-DAPG were assessed using bacterial biosensors with inducible bioluminescence corresponding to DNA and protein damage. It was unable to register any positive response from either sensor. As a result, the bactericidal action of 2,4-DAPG is believed to be associated with the destruction of the bacterial barrier structures. The subinhibitory effect of 2,4-diacetylphloroglucinol was tested on quorum-sensing mediated processes in Pectobacterium carotovorum. Subinhibitory concentrations of 2,4-DAPG were found to lower the biosynthesis of acyl-homoserine lactones in P. carotovorum in a dose-dependent manner. Further investigation elucidated that 2,4-DAPG inhibits the metabolic activity of bacteria without affecting their viability.


Assuntos
Antibacterianos/química , Anti-Infecciosos/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Floroglucinol/análogos & derivados , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Microscopia de Força Atômica , Floroglucinol/química , Floroglucinol/farmacologia , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/patogenicidade , Percepção de Quorum/efeitos dos fármacos , Metabolismo Secundário/genética , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA