Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Physiol ; 601(19): 4227-4241, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37747358

RESUMO

Cells execute specific responses to diverse environmental cues by encoding information in distinctly compartmentalized biochemical signalling reactions. Genetically encoded fluorescent biosensors enable the spatial and temporal monitoring of signalling events in live cells. Temporal and spatiotemporal computational models can be used to interpret biosensor experiments in complex biochemical networks and to explore hypotheses that are difficult to test experimentally. In this review, we first provide brief discussions of the experimental toolkit of fluorescent biosensors as well as computational basics with a focus on temporal and spatiotemporal deterministic models. We then describe how we used this combined approach to identify and investigate a protein kinase A (PKA) - cAMP - Ca2+ oscillatory circuit in MIN6 ß cells, a mouse pancreatic ß cell system. We describe the application of this combined approach to interrogate how this oscillatory circuit is differentially regulated in a nano-compartment formed at the plasma membrane by the scaffolding protein A kinase anchoring protein 79/150. We leveraged both temporal and spatiotemporal deterministic models to identify the key regulators of this oscillatory circuit, which we confirmed with further experiments. The powerful approach of combining live-cell biosensor imaging with quantitative modelling, as discussed here, should find widespread use in the investigation of spatiotemporal regulation of cell signalling.


Assuntos
Técnicas Biossensoriais , Transdução de Sinais , Animais , Camundongos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diagnóstico por Imagem , Membrana Celular/metabolismo , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos
3.
ACS Sens ; 8(1): 19-27, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36602887

RESUMO

A major limitation of time-lapse microscopy combined with fluorescent biosensors, a powerful tool for quantifying spatiotemporal dynamics of signaling in single living cells, is low-experimental throughput. To overcome this limitation, we created a highly customizable, MATLAB-based platform: flexible automated liquid-handling combined microscope (FALCOscope) that coordinates an OpenTrons liquid handler and a fluorescence microscope to automate drug treatments, fluorescence imaging, and single-cell analysis. To test the feasibility of the FALCOscope, we quantified G protein-coupled receptor (GPCR)-stimulated Protein Kinase A activity and cAMP responses to GPCR agonists and antagonists. We also characterized cAMP dynamics induced by GPR68/OGR1, a proton-sensing GPCR, in response to variable extracellular pH values. GPR68-induced cAMP responses were more transient in acidic than neutral pH values, suggesting a pH-dependence for signal attenuation. Ogerin, a GPR68 positive allosteric modulator, enhanced cAMP response most strongly at pH 7.0 and sustained cAMP response for acidic pH values, thereby demonstrating the capability of the FALCOscope to capture allosteric modulation. At a high concentration, ogerin increased cAMP signaling independent of GPR68, likely via phosphodiesterase inhibition. The FALCOscope system thus enables enhanced throughput single-cell dynamic measurements and is a versatile system for interrogating spatiotemporal regulation of signaling molecules in living cells and for drug profiling and screening.


Assuntos
Álcoois Benzílicos , Transdução de Sinais , Álcoois Benzílicos/farmacologia , Microscopia de Fluorescência , Triazinas , Receptores Acoplados a Proteínas G/metabolismo
4.
Phys Rev Lett ; 129(2): 020801, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867452

RESUMO

In this Letter, we propose a new quantitative phase imaging methodology named Fourier optical spin splitting microscopy (FOSSM). FOSSM relies on a metasurface located at the Fourier plane of a polarized microscope to separate the object image into two replicas of opposite circularly polarized states. The bias retardation between the two replicas is tuned by translating the metasurface or rotating the analyzer. Combined with a polarized camera, FOSSM can easily achieve single-shot quantitative phase gradient imaging, which greatly reduces the complexity of current phase microscope setups, paving the way for the next generation high-speed real-time multifunctional microscopy.


Assuntos
Microscopia , Microscopia/métodos
5.
Adv Sci (Weinh) ; 8(22): e2102230, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34436815

RESUMO

Resolution capability of the linear structured illumination microscopy (SIM) plays a key role in its applications in physics, medicine, biology, and life science. Many advanced methodologies have been developed to extend the resolution of structured illumination by using subdiffraction-limited optical excitation patterns. However, obtaining SIM images with a resolution beyond 40 nm at visible frequency remains as an insurmountable obstacle due to the intrinsic limitation of spatial frequency bandwidth of the involved materials and the complexity of the illumination system. Here, a low-loss natural organic hyperbolic material (OHM) that can support record high spatial-frequency modes beyond 50k0 , i.e., effective refractive index larger than 50, at visible frequencies is reported. OHM-based speckle structured illumination microscopy demonstrates imaging resolution at 30 nm scales with enhanced fluorophore photostability, biocompatibility, easy to use and low cost. This study will open up a new route in super-resolution microscopy by utilizing OHM films for various applications including bioimaging and sensing.


Assuntos
Iluminação/instrumentação , Iluminação/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Desenho de Equipamento , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos
6.
Nat Commun ; 12(1): 1559, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692354

RESUMO

Structured illumination microscopy (SIM) is one of the most powerful and versatile optical super-resolution techniques. Compared with other super-resolution methods, SIM has shown its unique advantages in wide-field imaging with high temporal resolution and low photon damage. However, traditional SIM only has about 2 times spatial resolution improvement compared to the diffraction limit. In this work, we propose and experimentally demonstrate an easily-implemented, low-cost method to extend the resolution of SIM, named speckle metamaterial-assisted illumination nanoscopy (speckle-MAIN). A metamaterial structure is introduced to generate speckle-like sub-diffraction-limit illumination patterns in the near field with improved spatial frequency. Such patterns, similar to traditional SIM, are then used to excite objects on top of the surface. We demonstrate that speckle-MAIN can bring the resolution down to 40 nm and beyond. Speckle-MAIN represents a new route for super-resolution, which may lead to important applications in bio-imaging and surface characterization.


Assuntos
Microscopia/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos
7.
Nano Lett ; 21(4): 1716-1721, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33576637

RESUMO

Determining the axial position of an emitter with nanoscale precision is critical to a fundamental imaging methodology. While there are many advanced optical techniques being applied to high-resolution imaging, high-axial-resolution topography imaging of living cells is particularly challenging. Here, we present an application of metamaterial-assisted photobleaching microscopy (MAPM) with high-axial resolution to characterize morphological properties of living cells. Quantitative imaging of changes in the morphology of live cells is obtained by topographic and statistical analysis. The time-lapse topography image using the metamaterial-induced photostability provides information about growth factor induced changes in the cell morphology with high-axial resolution.


Assuntos
Fotodegradação , Microscopia de Fluorescência
8.
Adv Mater ; 33(9): e2006496, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33506542

RESUMO

The dynamics of photons in fluorescent molecules plays a key role in fluorescence imaging, optical sensing, organic photovoltaics, and displays. Photobleaching is an irreversible photodegradation process of fluorophores, representing a fundamental limitation in relevant optical applications. Chemical reagents are used to suppress the photobleaching rate but with exceptionally high specificity for each type of fluorophore. Here, using organic hyperbolic materials (OHMs), an optical platform to achieve unprecedented fluorophore photostability without any chemical specificity is demonstrated. A more than 500-fold lengthening of the photobleaching lifetime and a 230-fold increase in the total emitted photon counts are observed simultaneously. These exceptional improvements solely come from the low-loss hyperbolic dispersion of OHM films and the large resultant Purcell effect in the visible spectral range. The demonstrated OHM platform may open up a new paradigm in nanophotonics and organic plasmonics for super-resolution imaging and the engineering of light-matter interactions at the nanoscale.

9.
Nat Commun ; 11(1): 1848, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296061

RESUMO

Genetically encoded Förster Resonance Energy Transfer (FRET)-based biosensors are powerful tools to illuminate spatiotemporal regulation of cell signaling in living cells, but the utility of the red spectrum for biosensing was limited due to a lack of bright and stable red fluorescent proteins. Here, we rationally improve the photophysical characteristics of the coral-derived fluorescent protein TagRFP-T. We show that a new single-residue mutant, super-TagRFP (stagRFP) has nearly twice the molecular brightness of TagRFP-T and negligible photoactivation. stagRFP facilitates significant improvements on multiple green-red biosensors as a FRET acceptor and is an efficient FRET donor that supports red/far-red FRET biosensing. Capitalizing on the ability of stagRFP to couple with multiple FRET partners, we develop a novel multiplex method to examine the confluence of signaling activities from three kinases simultaneously in single living cells, providing evidence for a role of Src family kinases in regulating growth factor induced Akt and ERK activities.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas Luminescentes/química , Humanos , Mutagênese/genética , Mutagênese/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína Vermelha Fluorescente
10.
JCI Insight ; 52019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31211697

RESUMO

The lung is a relatively quiescent organ during homeostasis, but has a remarkable capacity for repair after injury. Alveolar epithelial type I cells (AEC1s) line airspaces and mediate gas exchange. After injury, they are regenerated by differentiation from their progenitors - alveolar epithelial type II cells (AEC2s) - which also secrete surfactant to maintain surface tension and alveolar patency. While recent studies showed that the maintenance of AEC2 stemness is Wnt dependent, the molecular mechanisms underlying AEC2-AEC1 differentiation in adult lung repair are still incompletely understood. Here we show that WWTR1 (TAZ) plays a crucial role in AEC differentiation. Using an in vitro organoid culture system, we found that tankyrase inhibition can efficiently block AEC2-AEC1 differentiation, and this effect was due to the inhibition of TAZ. In a bleomycin induced lung injury model, conditional deletion of TAZ in AEC2s dramatically reduced AEC1 regeneration during recovery, leading to exacerbated alveolar lesions and fibrosis. In patients with idiopathic pulmonary fibrosis (IPF), decreased blood levels of RAGE, a biomarker of AEC1 health, were associated with more rapid disease progression. Our findings implicate TAZ as a critical factor involved in AEC2 to AEC1 differentiation, and hence the maintenance of alveolar integrity after injury.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Lesão Pulmonar/metabolismo , Transativadores/metabolismo , Transativadores/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Bleomicina/efeitos adversos , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese/efeitos dos fármacos , Organogênese/fisiologia , Organoides/metabolismo , Regeneração/fisiologia , Células-Tronco/metabolismo , Transativadores/genética , Transcriptoma , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...