Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Bull Math Biol ; 86(3): 31, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353870

RESUMO

To characterize Coronavirus Disease 2019 (COVID-19) transmission dynamics in each of the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix in 2020 and 2021, we extended a previously reported compartmental model accounting for effects of multiple distinct periods of non-pharmaceutical interventions by adding consideration of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2). For each MSA, we found region-specific parameterizations of the model using daily reports of new COVID-19 cases available from January 21, 2020 to October 31, 2021. In the process, we obtained estimates of the relative infectiousness of Alpha and Delta as well as their takeoff times in each MSA (the times at which sustained transmission began). The estimated infectiousness of Alpha ranged from 1.1x to 1.4x that of viral strains circulating in 2020 and early 2021. The estimated relative infectiousness of Delta was higher in all cases, ranging from 1.6x to 2.1x. The estimated Alpha takeoff times ranged from February 1 to February 28, 2021. The estimated Delta takeoff times ranged from June 2 to June 26, 2021. Estimated takeoff times are consistent with genomic surveillance data.


Assuntos
COVID-19 , SARS-CoV-2 , Estados Unidos/epidemiologia , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Conceitos Matemáticos , Modelos Biológicos , Vacinação
2.
medRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34704095

RESUMO

To characterize Coronavirus Disease 2019 (COVID-19) transmission dynamics in each of the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix in 2020 and 2021, we extended a previously reported compartmental model accounting for effects of multiple distinct periods of non-pharmaceutical interventions by adding consideration of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2). For each MSA, we found region-specific parameterizations of the model using daily reports of new COVID-19 cases available from January 21, 2020 to October 31, 2021. In the process, we obtained estimates of the relative infectiousness of Alpha and Delta as well as their takeoff times in each MSA (the times at which sustained transmission began). The estimated infectiousness of Alpha ranged from 1.1x to 1.4x that of viral strains circulating in 2020 and early 2021. The estimated relative infectiousness of Delta was higher in all cases, ranging from 1.6x to 2.1x. The estimated Alpha takeoff times ranged from February 1 to February 28, 2021. The estimated Delta takeoff times ranged from June 2 to June 26, 2021. Estimated takeoff times are consistent with genomic surveillance data. One-Sentence Summary: Using a compartmental model parameterized to reproduce available reports of new Coronavirus Disease 2019 (COVID-19) cases, we quantified the impacts of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2) on regional epidemics in the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix.

3.
PLOS Glob Public Health ; 3(6): e0001490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342996

RESUMO

During an early period of the Coronavirus Disease 2019 (COVID-19) pandemic, the Navajo Nation, much like New York City, experienced a relatively high rate of disease transmission. Yet, between January and October 2020, it experienced only a single period of growth in new COVID-19 cases, which ended when cases peaked in May 2020. The daily number of new cases slowly decayed in the summer of 2020 until late September 2020. In contrast, the surrounding states of Arizona, Colorado, New Mexico, and Utah all experienced at least two periods of growth in the same time frame, with second surges beginning in late May to early June. Here, we investigated these differences in disease transmission dynamics with the objective of quantifying the contributions of non-pharmaceutical interventions (NPIs) (e.g., behaviors that limit disease transmission). We considered a compartmental model accounting for distinct periods of NPIs to analyze the epidemic in each of the five regions. We used Bayesian inference to estimate region-specific model parameters from regional surveillance data (daily reports of new COVID-19 cases) and to quantify uncertainty in parameter estimates and model predictions. Our results suggest that NPIs in the Navajo Nation were sustained over the period of interest, whereas in the surrounding states, NPIs were relaxed, which allowed for subsequent surges in cases. Our region-specific model parameterizations allow us to quantify the impacts of NPIs on disease incidence in the regions of interest.

4.
medRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824849

RESUMO

During an early period of the Coronavirus Disease 2019 (COVID-19) pandemic, the Navajo Nation, much like New York City, experienced a relatively high rate of disease transmission. Yet, between January and October 2020, it experienced only a single period of growth in new COVID-19 cases, which ended when cases peaked in May 2020. The daily number of new cases slowly decayed in the summer of 2020 until late September 2020. In contrast, the surrounding states of Arizona, Colorado, New Mexico, and Utah all experienced at least two periods of growth in the same time frame, with second surges beginning in late May to early June. To investigate the causes of this difference, we used a compartmental model accounting for distinct periods of non-pharmaceutical interventions (NPIs ) ( e.g., behaviors that limit disease transmission) to analyze the epidemic in each of the five regions. We used Bayesian inference to estimate region-specific model parameters from regional surveillance data (daily reports of new COVID-19 cases) and to quantify uncertainty in parameter estimates and model predictions. Our results suggest that NPIs in the Navajo Nation were sustained over the period of interest, whereas in the surrounding states, NPIs were relaxed, which allowed for subsequent surges in cases. Our region-specific model parameterizations allow us to quantify the impacts of NPIs on disease incidence in the regions of interest.

5.
Viruses ; 14(1)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35062361

RESUMO

Although many persons in the United States have acquired immunity to COVID-19, either through vaccination or infection with SARS-CoV-2, COVID-19 will pose an ongoing threat to non-immune persons so long as disease transmission continues. We can estimate when sustained disease transmission will end in a population by calculating the population-specific basic reproduction number ℛ0, the expected number of secondary cases generated by an infected person in the absence of any interventions. The value of ℛ0 relates to a herd immunity threshold (HIT), which is given by 1-1/ℛ0. When the immune fraction of a population exceeds this threshold, sustained disease transmission becomes exponentially unlikely (barring mutations allowing SARS-CoV-2 to escape immunity). Here, we report state-level ℛ0 estimates obtained using Bayesian inference. Maximum a posteriori estimates range from 7.1 for New Jersey to 2.3 for Wyoming, indicating that disease transmission varies considerably across states and that reaching herd immunity will be more difficult in some states than others. ℛ0 estimates were obtained from compartmental models via the next-generation matrix approach after each model was parameterized using regional daily confirmed case reports of COVID-19 from 21 January 2020 to 21 June 2020. Our ℛ0 estimates characterize the infectiousness of ancestral strains, but they can be used to determine HITs for a distinct, currently dominant circulating strain, such as SARS-CoV-2 variant Delta (lineage B.1.617.2), if the relative infectiousness of the strain can be ascertained. On the basis of Delta-adjusted HITs, vaccination data, and seroprevalence survey data, we found that no state had achieved herd immunity as of 20 September 2021.


Assuntos
Número Básico de Reprodução , COVID-19/epidemiologia , COVID-19/transmissão , Teorema de Bayes , COVID-19/imunologia , Epidemias , Modelos Epidemiológicos , Humanos , Imunidade Coletiva , SARS-CoV-2 , Incerteza , Estados Unidos/epidemiologia
6.
Bioinformatics ; 38(6): 1770-1772, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986226

RESUMO

SUMMARY: Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty. AVAILABILITY AND IMPLEMENTATION: PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Humanos , Cadeias de Markov , Teorema de Bayes , Algoritmos , Software , Método de Monte Carlo
7.
medRxiv ; 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34611664

RESUMO

Although many persons in the United States have acquired immunity to COVID-19, either through vaccination or infection with SARS-CoV-2, COVID-19 will pose an ongoing threat to non-immune persons so long as disease transmission continues. We can estimate when sustained disease transmission will end in a population by calculating the population-specific basic reproduction number ℛ 0 , the expected number of secondary cases generated by an infected person in the absence of any interventions. The value of ℛ 0 relates to a herd immunity threshold (HIT), which is given by 1 - 1/ℛ 0 . When the immune fraction of a population exceeds this threshold, sustained disease transmission becomes exponentially unlikely (barring mutations allowing SARS-CoV-2 to escape immunity). Here, we report state-level ℛ 0 estimates obtained using Bayesian inference. Maximum a posteriori estimates range from 7.1 for New Jersey to 2.3 for Wyoming, indicating that disease transmission varies considerably across states and that reaching herd immunity will be more difficult in some states than others. ℛ 0 estimates were obtained from compartmental models via the next-generation matrix approach after each model was parameterized using regional daily confirmed case reports of COVID-19 from 21-January-2020 to 21-June-2020. Our ℛ 0 estimates characterize infectiousness of ancestral strains, but they can be used to determine HITs for a distinct, currently dominant circulating strain, such as SARS-CoV-2 variant Delta (lineage B.1.617.2), if the relative infectiousness of the strain can be ascertained. On the basis of Delta-adjusted HITs, vaccination data, and seroprevalence survey data, we find that no state has achieved herd immunity as of 20-September-2021. SIGNIFICANCE STATEMENT: COVID-19 will continue to threaten non-immune persons in the presence of ongoing disease transmission. We can estimate when sustained disease transmission will end by calculating the population-specific basic reproduction number ℛ 0 , which relates to a herd immunity threshold (HIT), given by 1 - 1/ℛ 0 . When the immune fraction of a population exceeds this threshold, sustained disease transmission becomes exponentially unlikely. Here, we report state-level ℛ 0 estimates indicating that disease transmission varies considerably across states. Our ℛ 0 estimates can also be used to determine HITs for the Delta variant of COVID-19. On the basis of Delta-adjusted HITs, vaccination data, and serological survey results, we find that no state has yet achieved herd immunity.

8.
Emerg Infect Dis ; 27(3): 767-778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622460

RESUMO

To increase situational awareness and support evidence-based policymaking, we formulated a mathematical model for coronavirus disease transmission within a regional population. This compartmental model accounts for quarantine, self-isolation, social distancing, a nonexponentially distributed incubation period, asymptomatic persons, and mild and severe forms of symptomatic disease. We used Bayesian inference to calibrate region-specific models for consistency with daily reports of confirmed cases in the 15 most populous metropolitan statistical areas in the United States. We also quantified uncertainty in parameter estimates and forecasts. This online learning approach enables early identification of new trends despite considerable variability in case reporting.


Assuntos
Infecções por Coronavirus/epidemiologia , Epidemias , Previsões/métodos , Teorema de Bayes , Coronavirus , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Epidemias/prevenção & controle , Humanos , Incidência , Modelos Teóricos , Incerteza , Estados Unidos/epidemiologia
9.
medRxiv ; 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-32743595

RESUMO

To increase situational awareness and support evidence-based policy-making, we formulated a mathematical model for COVID-19 transmission within a regional population. This compartmental model accounts for quarantine, self-isolation, social distancing, a non-exponentially distributed incubation period, asymptomatic individuals, and mild and severe forms of symptomatic disease. Using Bayesian inference, we have been calibrating region-specific models daily for consistency with new reports of confirmed cases from the 15 most populous metropolitan statistical areas in the United States and quantifying uncertainty in parameter estimates and predictions of future case reports. This online learning approach allows for early identification of new trends despite considerable variability in case reporting. ARTICLE SUMMARY LINE: We report models for regional COVID-19 epidemics and use of Bayesian inference to quantify uncertainty in daily predictions of expected reporting of new cases, enabling identification of new trends in surveillance data.

10.
ArXiv ; 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32743021

RESUMO

To increase situational awareness and support evidence-based policy-making, we formulated two types of mathematical models for COVID-19 transmission within a regional population. One is a fitting function that can be calibrated to reproduce an epidemic curve with two timescales (e.g., fast growth and slow decay). The other is a compartmental model that accounts for quarantine, self-isolation, social distancing, a non-exponentially distributed incubation period, asymptomatic individuals, and mild and severe forms of symptomatic disease. Using Bayesian inference, we have been calibrating our models daily for consistency with new reports of confirmed cases from the 15 most populous metropolitan statistical areas in the United States and quantifying uncertainty in parameter estimates and predictions of future case reports. This online learning approach allows for early identification of new trends despite considerable variability in case reporting. We infer new significant upward trends for five of the metropolitan areas starting between 19-April-2020 and 12-June-2020.

11.
iScience ; 19: 1012-1036, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31522114

RESUMO

In systems biology modeling, important steps include model parameterization, uncertainty quantification, and evaluation of agreement with experimental observations. To help modelers perform these steps, we developed the software PyBioNetFit, which in addition supports checking models against known system properties and solving design problems. PyBioNetFit introduces Biological Property Specification Language (BPSL) for the formal declaration of system properties. BPSL allows qualitative data to be used alone or in combination with quantitative data. PyBioNetFit performs parameterization with parallelized metaheuristic optimization algorithms that work directly with existing model definition standards: BioNetGen Language (BNGL) and Systems Biology Markup Language (SBML). We demonstrate PyBioNetFit's capabilities by solving various example problems, including the challenging problem of parameterizing a 153-parameter model of cell cycle control in yeast based on both quantitative and qualitative data. We demonstrate the model checking and design applications of PyBioNetFit and BPSL by analyzing a model of targeted drug interventions in autophagy signaling.

12.
Methods Mol Biol ; 1945: 391-419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945257

RESUMO

BioNetFit is a software tool designed for solving parameter identification problems that arise in the development of rule-based models. It solves these problems through curve fitting (i.e., nonlinear regression). BioNetFit is compatible with deterministic and stochastic simulators that accept BioNetGen language (BNGL)-formatted files as inputs, such as those available within the BioNetGen framework. BioNetFit can be used on a laptop or stand-alone multicore workstation as well as on many Linux clusters, such as those that use the Slurm Workload Manager to schedule jobs. BioNetFit implements a metaheuristic population-based global optimization procedure, an evolutionary algorithm (EA), to minimize a user-defined objective function, such as a residual sum of squares (RSS) function. BioNetFit also implements a bootstrapping procedure for determining confidence intervals for parameter estimates. Here, we provide step-by-step instructions for using BioNetFit to estimate the values of parameters of a BNGL-encoded model and to define bootstrap confidence intervals. The process entails the use of several plain-text files, which are processed by BioNetFit and BioNetGen. In general, these files include (1) one or more EXP files, which each contains (experimental) data to be used in parameter identification/bootstrapping; (2) a BNGL file containing a model section, which defines a (rule-based) model, and an actions section, which defines simulation protocols that generate GDAT and/or SCAN files with model predictions corresponding to the data in the EXP file(s); and (3) a CONF file that configures the fitting/bootstrapping job and that defines algorithmic parameter settings.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Software , Biologia de Sistemas/métodos , Algoritmos , Simulação por Computador
13.
PLoS Comput Biol ; 15(1): e1006706, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653502

RESUMO

Receptor tyrosine kinases (RTKs) typically contain multiple autophosphorylation sites in their cytoplasmic domains. Once activated, these autophosphorylation sites can recruit downstream signaling proteins containing Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains, which recognize phosphotyrosine-containing short linear motifs (SLiMs). These domains and SLiMs have polyspecific or promiscuous binding activities. Thus, multiple signaling proteins may compete for binding to a common SLiM and vice versa. To investigate the effects of competition on RTK signaling, we used a rule-based modeling approach to develop and analyze models for ligand-induced recruitment of SH2/PTB domain-containing proteins to autophosphorylation sites in the insulin-like growth factor 1 (IGF1) receptor (IGF1R). Models were parameterized using published datasets reporting protein copy numbers and site-specific binding affinities. Simulations were facilitated by a novel application of model restructuration, to reduce redundancy in rule-derived equations. We compare predictions obtained via numerical simulation of the model to those obtained through simple prediction methods, such as through an analytical approximation, or ranking by copy number and/or KD value, and find that the simple methods are unable to recapitulate the predictions of numerical simulations. We created 45 cell line-specific models that demonstrate how early events in IGF1R signaling depend on the protein abundance profile of a cell. Simulations, facilitated by model restructuration, identified pairs of IGF1R binding partners that are recruited in anti-correlated and correlated fashions, despite no inclusion of cooperativity in our models. This work shows that the outcome of competition depends on the physicochemical parameters that characterize pairwise interactions, as well as network properties, including network connectivity and the relative abundances of competitors.


Assuntos
Modelos Biológicos , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Análise por Conglomerados , Biologia Computacional , Humanos , Camundongos , Fosforilação , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Domínios de Homologia de src
14.
Semin Cancer Biol ; 54: 162-173, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29518522

RESUMO

RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.


Assuntos
Regulação da Expressão Gênica , Modelos Biológicos , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo , Animais , Proteínas de Transporte , Descoberta de Drogas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , Transporte Proteico , Biologia de Sistemas/métodos , Proteínas ras/antagonistas & inibidores , Proteínas ras/química
15.
Nat Commun ; 9(1): 3901, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254246

RESUMO

In systems biology, qualitative data are often generated, but rarely used to parameterize models. We demonstrate an approach in which qualitative and quantitative data can be combined for parameter identification. In this approach, qualitative data are converted into inequality constraints imposed on the outputs of the model. These inequalities are used along with quantitative data points to construct a single scalar objective function that accounts for both datasets. To illustrate the approach, we estimate parameters for a simple model describing Raf activation. We then apply the technique to a more elaborate model characterizing cell cycle regulation in yeast. We incorporate both quantitative time courses (561 data points) and qualitative phenotypes of 119 mutant yeast strains (1647 inequalities) to perform automated identification of 153 model parameters. We quantify parameter uncertainty using a profile likelihood approach. Our results indicate the value of combining qualitative and quantitative data to parameterize systems biology models.


Assuntos
Algoritmos , Pesquisa Biomédica/métodos , Modelos Biológicos , Biologia de Sistemas/métodos , Animais , Pesquisa Biomédica/estatística & dados numéricos , Ciclo Celular/genética , Ciclo Celular/fisiologia , Humanos , Cinética , Mutação , Fenótipo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Biologia de Sistemas/estatística & dados numéricos , Quinases raf/antagonistas & inibidores , Quinases raf/metabolismo
16.
Cell Syst ; 7(2): 161-179.e14, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30007540

RESUMO

Clinically used RAF inhibitors are ineffective in RAS mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, posttranslational modifications, and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS, and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases raf/antagonistas & inibidores , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Simulação de Acoplamento Molecular , Mutação/efeitos dos fármacos , Neoplasias/genética , Neoplasias/metabolismo , Multimerização Proteica/efeitos dos fármacos , Termodinâmica , Quinases raf/química , Quinases raf/metabolismo , Proteínas ras/genética
17.
Br J Cancer ; 117(4): 572-582, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28720843

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer with complex genomes and dense fibrotic stroma. This study was designed to identify clinically relevant somatic aberrations in pancreatic cancer genomes of patients with primary and metastatic disease enrolled and treated in two clinical trials. METHODS: Tumour nuclei were flow sorted prior to whole genome copy number variant (CNV) analysis. Targeted or whole exome sequencing was performed on most samples. We profiled biopsies from 68 patients enrolled in two Stand Up to Cancer (SU2C)-sponsored clinical trials. These included 38 resected chemoradiation naïve tumours (SU2C 20206-003) and metastases from 30 patients who progressed on prior therapies (SU2C 20206-001). Patient outcomes including progression-free survival (PFS) and overall survival (OS) were observed. RESULTS: We defined: (a) CDKN2A homozygous deletions that included the adjacent MTAP gene, only its' 3' region, or excluded MTAP; (b) SMAD4 homozygous deletions that included ME2; (c) a pancreas-specific MYC super-enhancer region; (d) DNA repair-deficient genomes; and (e) copy number aberrations present in PDA patients with long-term (⩾ 40 months) and short-term (⩽ 12 months) survival after surgical resection. CONCLUSIONS: We provide a clinically relevant framework for genomic drivers of PDA and for advancing novel treatments.


Assuntos
Sequência de Bases , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Deleção de Sequência , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biópsia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/secundário , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p18/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Reparo do DNA/genética , Intervalo Livre de Doença , Elementos Facilitadores Genéticos , Exoma , Feminino , Genes myc , Homozigoto , Humanos , Malato Desidrogenase/genética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Pâncreas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Purina-Núcleosídeo Fosforilase/genética , Proteína Smad4/genética , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genética
18.
J Gastrointest Oncol ; 8(6): 925-935, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29299351

RESUMO

BACKGROUND: The choice of a regimen in metastatic pancreatic cancer patients following progression on 1st line therapy is empiric and outcomes are unsatisfactory. This phase II study was performed to evaluate the efficacy of therapy selected by immunohistochemistry (IHC) in these patients following progression after one or more therapies. METHODS: Eligible patients underwent a percutaneous biopsy of a metastatic lesion and treatment selection was determined by IHC. The study required 35 evaluable patients (power of 86%) for detecting a true 1-year survival rate of >20%. RESULTS: A tumor biopsy was performed in 48 of 49 accrued patients. Study therapy was not given (n=13) either due to insufficient tumor on biopsy (n=8) or due to worsening cancer related symptoms after biopsy (n=5). The demographics of evaluable patients (n=35) are male/female (59%/41%), with age range 34-78 years (median 63 years). Patients had 1-6 prior regimens (median of 2). The most common IHC targets were topoisomerase 1 or 2, thymidylate synthase, excision repair cross-complementation group 1 protein (ERCC1), and osteonectin secreted protein acidic and rich in cysteine (SPARC). Commercially available treatment regimens prescribed included FOLFIRI, FOLFOX, irinotecan, and doxorubicin. The response (RECIST) was 9%, the median survival was 5.6 months (94% CI, 3.8-8.2), and the 1-year survival was 20% (95% CI, 7-33%). CONCLUSIONS: In all patients, IHC assays resulted in identification of at least two targets for therapy and a non-cross resistant regimen could be prescribed for therapy with evidence of some benefit. An IHC based treatment strategy is feasible and needs validation in larger studies.

19.
J Cheminform ; 8: 27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27195023

RESUMO

BACKGROUND: Halogen bonding has recently come to play as a target for lead optimization in rational drug design. However, most docking program don't account for halogen bonding in their scoring functions and are not able to utilize this new approach. In this study a new and improved halogen bonding scoring function (XBSF) is presented along with its implementation in the AutoDock Vina molecular docking software. This new improved program is termed as AutoDock VinaXB, where XB stands for the halogen bonding parameters that were added. RESULTS: XBSF scoring function is derived based on the X···A distance and C-X···A angle of interacting atoms. The distance term was further corrected to account for the polar flattening effect of halogens. A total of 106 protein-halogenated ligand complexes were tested and compared in terms of binding affinity and docking poses using Vina and VinaXB. VinaXB performed superior to Vina in the majority of instances. VinaXB was closer to native pose both above and below 2 Å deviation categories almost twice as frequently as Vina. CONCLUSIONS: Implementation of XBSF into AutoDock Vina has been shown to improve the accuracy of the docking result with regards to halogenated ligands. AutoDock VinaXB addresses the issues of halogen bonds that were previously being scored unfavorably due to repulsion factors, thus effectively lowering the output RMSD values.

20.
Bioinformatics ; 32(5): 798-800, 2016 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26556387

RESUMO

UNLABELLED: Rule-based models are analyzed with specialized simulators, such as those provided by the BioNetGen and NFsim open-source software packages. Here, we present BioNetFit, a general-purpose fitting tool that is compatible with BioNetGen and NFsim. BioNetFit is designed to take advantage of distributed computing resources. This feature facilitates fitting (i.e. optimization of parameter values for consistency with data) when simulations are computationally expensive. AVAILABILITY AND IMPLEMENTATION: BioNetFit can be used on stand-alone Mac, Windows/Cygwin, and Linux platforms and on Linux-based clusters running SLURM, Torque/PBS, or SGE. The BioNetFit source code (Perl) is freely available (http://bionetfit.nau.edu). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: bionetgen.help@gmail.com.


Assuntos
Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...