Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 215: 113855, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690699

RESUMO

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the unambiguous identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic-lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels were estimated. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Our synthetic and analytical methodologies will support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.


Assuntos
Aminoácidos , Oxilipinas , Oxilipinas/metabolismo , Compostos de Diazônio , Ciclopentanos/metabolismo
2.
Biomed Pharmacother ; 161: 114492, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931035

RESUMO

Targeting cyclin-dependent kinase 7 (CDK7) provides an interesting therapeutic option in cancer therapy because this kinase participates in regulating the cell cycle and transcription. Here, we describe a new trisubstituted pyrazolo[4,3-d]pyrimidine derivative, LGR6768, that inhibits CDK7 in the nanomolar range and displays favourable selectivity across the CDK family. We determined the structure of fully active CDK2/cyclin A2 in complex with LGR6768 at 2.6 Å resolution using X-ray crystallography, revealing conserved interactions within the active site. Structural analysis and comparison with LGR6768 docked to CDK7 provides an explanation of the observed biochemical selectivity, which is linked to a conformational difference in the biphenyl moiety. In cellular experiments, LGR6768 affected regulation of the cell cycle and transcription by inhibiting the phosphorylation of cell cycle CDKs and the carboxy-terminal domain of RNA polymerase II, respectively. LGR6768 limited the proliferation of several leukaemia cell lines, triggered significant changes in protein and mRNA levels related to CDK7 inhibition and induced apoptosis in dose- and time-dependent experiments. Our work supports previous findings and provides further information for the development of selective CDK7 inhibitors.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Quinases Ciclina-Dependentes/genética , Fosforilação , Ciclo Celular , Pirimidinas/farmacologia , Pirimidinas/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
3.
Phytochemistry ; 205: 113481, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283448

RESUMO

Isoprenoid cytokinins are a class of naturally occurring plant signaling molecules. A series of prepared compounds derived from isoprenoid cytokinins (isopentenyladenine, trans-zeatin and cis-zeatin) with attached 2'-deoxy-d-ribose or 2',3'-dideoxy-d-ribose at the N9 position of the purine were prepared and their biological activities were examined. Different synthetic approaches were employed. The final compounds were characterized with variety of physicochemical methods (TLC, HPLC-MS, and NMR) and their cytokinin activity was determined in classical bioassays such as Amaranthus, tobacco callus, detached wheat leaf senescence and Arabidopsis thaliana root elongation inhibition assay. In addition, compounds were screened for activation of the cytokinin signaling pathway (bacterial receptor, competitive ligand binding and ARR5::GUS assay) to provide a detailed assessment of CK structure-activity relationship. The prepared compounds were found to be non-toxic to human cells and the majority of assays exhibited the highest activity of free bases while 2',3'-dideoxyribosides had very weak or no activity. In contrast to the free bases, all 2'-deoxyriboside derivatives were not toxic to tobacco callus even at the highest tested concentration (10-4 moL/l) and compound 1 (iPdR) induced betacyanin synthesis at higher concentration even stronger than iP free base in the Amaranthus bioassay. The general cytokinin activity pattern base > riboside >2'-deoxyriboside > 2',3'-dideoxyriboside was distinguished.


Assuntos
Citocininas , Terpenos , Humanos , Citocininas/farmacologia , Ribose
4.
J Med Chem ; 65(13): 8881-8896, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35749742

RESUMO

3,5,7-Trisubstituted pyrazolo[4,3-d]pyrimidines have been identified as potent inhibitors of cyclin-dependent kinases (CDKs), which are established drug targets. Herein, we describe their further structural modifications leading to novel nanomolar inhibitors with strong antiproliferative activity. We determined the crystal structure of fully active CDK2/A2 with 5-(2-amino-1-ethyl)thio-3-cyclobutyl-7-[4-(pyrazol-1-yl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidine (24) at 1.7 Å resolution, confirming the competitive mode of inhibition. Biochemical and cellular assays in lymphoma cell lines confirmed the expected mechanism of action through dephosphorylation of retinoblastoma protein and RNA polymerase II, leading to induction of apoptosis. Importantly, we also revealed an interesting ability of compound 24 to induce proteasome-dependent degradation of cyclin K both in vitro and in a patient-derived xenograft in vivo. We propose that 24 has a dual mechanism of action, acting as a kinase inhibitor and as a molecular glue inducing an interaction between CDK12 and DDB1 that leads to polyubiquitination of cyclin K and its subsequent degradation.


Assuntos
Antineoplásicos , Quinases Ciclina-Dependentes , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina , Ciclinas/metabolismo , Humanos , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Relação Estrutura-Atividade
5.
J Agric Food Chem ; 69(41): 12111-12125, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34610745

RESUMO

Plant hormones, also called phytohormones, are small signaling molecules regulating a wide range of growth and developmental processes. These unique compounds respond to both external (light, temperature, water, nutrition, or pathogen attack) and internal factors (e.g., age) and mediate signal transduction leading to gene expression with the aim of allowing plants to adapt to constantly changing environmental conditions. Within the regulation of biological processes, individual groups of phytohormones act mostly through a web of interconnected responses rather than linear pathways, making elucidation of their mode of action in living organisms quite challenging. To further progress with our knowledge, the development of novel tools for phytohormone research is required. Although plenty of small molecules targeting phytohormone metabolic or signaling pathways (agonists, antagonists, and inhibitors) and labeled or tagged (fluorescently, isotopically, or biotinylated) compounds have been produced, the control over them in vivo is lost at the time of their administration. Caged compounds, on the other hand, represent a new approach to the development of small organic substances for phytohormone research. The term "caged compounds" refers to light-sensitive probes with latent biological activity, where the active molecule can be freed using a light beam in a highly spatio/temporal-, amplitude-, or frequency-defined manner. This review summarizes the up-to-date development in the field of caged plant hormones. Research progress is arranged in chronological order for each phytohormone regardless of the cage compound formulation and bacterial/plant/animal cell applications. Several known drawbacks and possible directions for future research are highlighted.


Assuntos
Reguladores de Crescimento de Plantas , Plantas , Adaptação Fisiológica , Animais , Células Vegetais , Transdução de Sinais
6.
Front Plant Sci ; 12: 675981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305975

RESUMO

Strigolactones are plant hormones regulating cytoskeleton-mediated developmental events in roots, such as lateral root formation and elongation of root hairs and hypocotyls. The latter process was addressed herein by the exogenous application of a synthetic strigolactone, GR24, and an inhibitor of strigolactone biosynthesis, TIS108, on hypocotyls of wild-type Arabidopsis and a strigolactone signaling mutant max2-1 (more axillary growth 2-1). Owing to the interdependence between light and strigolactone signaling, the present work was extended to seedlings grown under a standard light/dark regime, or under continuous darkness. Given the essential role of the cortical microtubules in cell elongation, their organization and dynamics were characterized under the conditions of altered strigolactone signaling using fluorescence microscopy methods with different spatiotemporal capacities, such as confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM). It was found that GR24-dependent inhibition of hypocotyl elongation correlated with changes in cortical microtubule organization and dynamics, observed in living wild-type and max2-1 seedlings stably expressing genetically encoded fluorescent molecular markers for microtubules. Quantitative assessment of microscopic datasets revealed that chemical and/or genetic manipulation of strigolactone signaling affected microtubule remodeling, especially under light conditions. The application of GR24 in dark conditions partially alleviated cytoskeletal rearrangement, suggesting a new mechanistic connection between cytoskeletal behavior and the light-dependence of strigolactone signaling.

7.
Methods Mol Biol ; 2309: 31-36, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028677

RESUMO

Strigolactones (SLs) are natural compounds occurring in plants which have a numerous functions in plant development; therefore, they are plant hormones. Unfortunately, their natural abundance is very low and because of their structure complexity it is difficult to prepare them in big quantities; alternatives with simpler structures and similar biological activity was developed. SLs mimics are compounds with simple synthesis. Methods for preparation of basic SLs mimics are described here.


Assuntos
Compostos Heterocíclicos com 3 Anéis/síntese química , Lactonas/síntese química , Mimetismo Molecular , Reguladores de Crescimento de Plantas/síntese química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Lactonas/farmacologia , Estrutura Molecular , Reguladores de Crescimento de Plantas/farmacologia , Relação Estrutura-Atividade
8.
Plant Physiol Biochem ; 155: 965-979, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32977141

RESUMO

There is increasing experimental evidence that strigolactones, a class of carotenoid-derived sesquiterpenoid hormones, and their downstream signal components play a role in plant resilience to abiotic stress. Strigolactones positively influence plant coping mechanisms in response to abiotic stressors like drought and high salinity. In this study, we examined the effects of rac-GR24 (a synthetic strigolactone analog) and strigolactone inhibitors on the physiological and molecular responses associated with thermotolerance during seed germination and seedling development in Lupinus angustifolius under heat stress. Photosystem I & II functions were also evaluated via Chl a fluorescence transient analysis in heat stressed lupine seedlings. Our results suggest a putative role for GR24 in mediating tolerance to heat stress during seed germination and seedling development albeit these responses appeared independent of D14-mediated signalling. Seeds primed with GR24 had the highest of all germination indices, enhanced proline content and reduced peroxidation of lipids. GR24 also enhanced the activities of enzymes of the antioxidant and glyoxalase systems in lupine seedlings. The JIP-test indicated that GR24 conferred resistance to heat stress-induced damage to the oxygen evolution complex while also preventing the inactivation of PSII reaction centres thus ensuring PSII thermotolerance.


Assuntos
Germinação , Resposta ao Choque Térmico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Lactonas/farmacologia , Lupinus/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Plântula/fisiologia , Sementes/fisiologia
9.
Molecules ; 24(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731484

RESUMO

A new hyaluronan derivative modified with ß-cyclodextrin units (CD-HA) was prepared via the click reaction between propargylated hyaluronan and monoazido-cyclodextrin (CD) to achieve a degree of substitution of 4%. The modified hyaluronan was characterized by 1H-nuclear magnetic resonance spectroscopy (NMR) and size exclusion chromatography. Subsequent 1H-NMR and isothermal calorimetric titration experiments revealed that the CD units on CD-HA can form virtual 1:1, 1:2, and 1:3 complexes with one-, two-, and three-site adamantane-based guests, respectively. These results imply that the CD-HA chains used the multitopic guests to form a supramolecular cross-linked network. The free CD-HA polymer was readily restored by the addition of a competing macrocycle, which entrapped the cross-linking guests. Thus, we demonstrated that the new CD-HA polymer is a promising component for the construction of chemical stimuli-responsive supramolecular architectures.


Assuntos
Ácido Hialurônico/química , Estrutura Molecular , Polímeros/química , beta-Ciclodextrinas/química , Calorimetria , Química Click , Ácido Hialurônico/síntese química , Espectroscopia de Ressonância Magnética , Polímeros/síntese química , beta-Ciclodextrinas/síntese química
10.
Bioorg Chem ; 90: 103005, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31271944

RESUMO

Rho-associated serine/threonine kinases (ROCKs) are principal regulators of the actin cytoskeleton that regulate the contractility, shape, motility, and invasion of cells. We explored the relationships between structure and anti-ROCK2 activity in a group of purine derivatives substituted at the C6 atom by piperidin-1-yl or azepan-1-yl groups. Structure-activity relationship (SAR) analyses suggested that anti-ROCK activity is retained, and may be further increased, by substitution of the parent compounds at the C2 atom or by expansion of the C6 side chain. These inhibitors of ROCK can reach effective concentrations within cells, as demonstrated by a decrease in phosphorylation of the ROCK target MLC, and by inhibition of the ROCK-dependent invasion of melanoma cells in the collagen matrix. Our study may be useful for further optimization of C6-substituted purine inhibitors of ROCKs and of other sensitive kinases identified by the screening of a broad panel of protein kinases.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Purinas/síntese química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
11.
J Med Chem ; 62(9): 4606-4623, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30943029

RESUMO

Cyclin-dependent kinases are therapeutic targets frequently deregulated in various cancers. By convenient alkylation of the 5-sulfanyl group, we synthesized 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2) H-pyrazolo[4,3- d]pyrimidines with various substitutions at position 5 with potent antiproliferative activity in non-Hodgkin lymphoma cell lines. The most potent derivative 4.35 also displayed activities across more than 60 cancer cell lines. The kinase profiling confirmed high selectivity of 4.35 toward cyclin-dependent kinases (CDKs) 2, 5, and 9, and the cocrystal with CDK2/cyclin A2 revealed its binding in the active site. Cultured lymphoma cell lines treated with 4.35 showed dephosphorylation of CDK substrates, cleavage of PARP-1, downregulation of XIAP and MCL-1, and activation of caspases, which collectively confirmed ongoing apoptosis. Moreover, 4.35 demonstrated significant activity in various cell line xenograft and patient-derived xenograft mouse models in vivo both as a monotherapy and as a combination therapy with the BCL2-targeting venetoclax. These findings support further studies of combinatorial treatment based on CDK inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Linfoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/síntese química , Pirazóis/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
N Biotechnol ; 48: 76-82, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30077756

RESUMO

Strigolactones (SLs) constitute a new class of plant hormones of increasing importance in plant science. The structure of natural SLs is too complex for ready access by synthesis. Therefore, much attention is being given to design of SL analogues and mimics with a simpler structure but with retention of bioactivity. Here new hybrid type SL mimics have been designed derived from auxins, the common plant growth regulators. Auxins were simply coupled with the butenolide D-ring using bromo (or chloro) butenolide. D-rings having an extra methyl group at the vicinal C-3' carbon atom, or at the C-2' carbon atom, or at both have also been studied. The new hybrid type SL mimics were bioassayed for germination activity of seeds of the parasitic weeds S. hermonthica, O. minor and P. ramosa using the classical method of counting germinated seeds and a colorimetric method. For comparison SL mimics derived from phenyl acetic acid were also investigated. The bioassays revealed that mimics with a normal D-ring had appreciable to good activity, those with an extra methyl group at C-2' were also appreciably active, whereas those with a methyl group in the vicinal C-3' position were inactive (S. hermonthica) or only slightly active. The new hybrid type mimics may be attractive as potential suicidal germination agents in agronomic applications.


Assuntos
Materiais Biomiméticos/química , Ácidos Indolacéticos/química , Lactonas/química , Reguladores de Crescimento de Plantas/química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Desenho de Fármacos , Estabilidade de Medicamentos , Germinação/efeitos dos fármacos , Ácidos Indolacéticos/síntese química , Ácidos Indolacéticos/farmacologia , Lactonas/síntese química , Lactonas/farmacologia , Estrutura Molecular , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento
13.
R Soc Open Sci ; 5(11): 181322, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564417

RESUMO

Cytokinins (CKs) and their metabolites and derivatives are essential for cell division, plant growth regulation and development. They are typically found at minute concentrations in plant tissues containing very complicated biological matrices. Therefore, defined standards labelled with stable isotopes are required for precise metabolic profiling and quantification of CKs, as well as in vivo elucidation of CK biosynthesis in various plant species. In this work, 11 [15N]-labelled C6-purine derivatives were prepared, among them 5 aromatic (4, 5, 6, 7, 8) and 3 isoprenoid (9, 10, 11) CKs. Compared to current methods, optimized syntheses of 6-amino-9H-[15N5]-purine (adenine) and 6-chloro-9H-[15N4]-purine (6-chloropurine) were performed to achieve more effective, selective and generally easier approaches. The chemical identity and purity of prepared compounds were confirmed by physico-chemical analyses (TLC; HRMS; HPLC-MS; 1H, 13C, 15N NMR). The presented approach is applicable for the synthesis of any other desired [15N4]-labelled C6-substituted purine derivatives.

14.
Bioconjug Chem ; 29(9): 2954-2969, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30086240

RESUMO

Novicidin (NVC), is a membrane-penetrating peptide, which forms a stable complex with Zn-Schiff base with interesting antitumor selectivity. We studied NVC derivatives to determine functional roles of key amino acids in toxicity, helicity, and binding of the Zn-Schiff base complex. Trimmed derivatives highlighted the role of peptide length and helicity in toxicity and membrane penetration. The removal of Lys from position 1 and 2 strongly increases the ability to disrupt the membranes. The trimming of the N-terminal residues significantly increases the stability of peptide helicity enhancing penetrating properties. Gly residue derivatives undermined a role of peptide bending in membrane penetration and toxicity. After the substitution of the central Gly derivatives with Ile or Lys, the peptides retained toxicity. These results illustrate the minor role of central helix bending in NVC toxicity. Binding-site-peptide derivatives identified His residue as the sole Zn-Schiff base binding site and eliminated the role of other aromatic residues.


Assuntos
Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Sistemas de Liberação de Medicamentos , Bases de Schiff/química , Zinco/administração & dosagem , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Glicina/química , Humanos , Ligantes , Conformação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/química
15.
Nanoscale ; 10(10): 4696-4707, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29442111

RESUMO

Preparation of graphene derivatives using fluorographene (FG) as a precursor has become a key strategy for the large-scale synthesis of new 2-D materials (e.g. graphene acid, cyanographene, allyl-graphene) with tailored physicochemical properties. However, to gain full control over the derivatization process, it is essential to understand the reaction mechanisms and accompanying processes that affect the composition and structure of the final products. Despite the strength of C-F bonds and high chemical stability of perfluorinated hydrocarbons, FG is surprisingly susceptible to reactions under ambient conditions. There is clear evidence that nucleophilic substitution on FG is accompanied by spontaneous defluorination, and solvent-induced defluorination can occur even in the absence of any nucleophilic agent. Here, we show that distributed radical centers (fluorine vacancies) on the FG surface need to be taken into account in order to rationalize the defluorination mechanism. Depending on the environment, these radical centers can react as electron acceptors, electrophilic sites and/or cause homolytic bond cleavages. We also propose a new radical mechanism of FG defluorination in the presence of N,N'-dimethylformamide (DMF) solvent. Spin-trap experiments as well as 19F NMR measurements unambiguously confirmed formation of N,N'-dimethylformyl radicals and also showed that N,N'-dimethylcarbamoyl fluoride plays a key role in the proposed mechanism. These findings imply that point defects in 2D materials should be considered as key factor determining their chemical properties and reactivity.

16.
J Nat Prod ; 80(7): 2136-2140, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28665127

RESUMO

Discadenine (1), a self-spore germination inhibitor from the cellular slim mold Dictyostelium discoideum, is structurally related to the plant hormone cytokinin. This compound was synthesized from l-aspartic acid, and its activities were confirmed by three classical cytokinin bioassays as well as by using binding and activation assays with the Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4.


Assuntos
Adenina/análogos & derivados , Arabidopsis/metabolismo , Dictyostelium/química , Adenina/síntese química , Adenina/química , Adenina/farmacologia , Ácido Aspártico/química , Citocininas/química , Citocininas/metabolismo , Estrutura Molecular , Estereoisomerismo
17.
Phytochemistry ; 135: 115-127, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27986278

RESUMO

Naturally occurring cytokinins are adenine-based plant hormones. Although, the effect of various substituents at positions N1, C2, N3, N6, N7, or N9 on the biological activity of cytokinins has been studied, the C8-substituted compounds have received little attention. Here, we report the synthesis and in vitro biological testing of thirty-one cytokinin derivatives substituted at the C8 position of the adenine skeleton and twenty-seven compounds which served as their N9-tetrahydropyranyl protected precursors. The cytokinin activity of all the compounds was determined in classical cytokinin biotests (wheat leaf senescence, Amaranthus and tobacco callus assays). With some exceptions, the compounds with a N9-tetrahydropyranyl group were generally less active than their de-protected analogs. The latter were further tested for their ability to activate the Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4 in bacterial receptor activation assays. Using this approach, we identified derivatives bearing short aliphatic chains and retaining high cytokinin activity. Such compounds are suitable candidates for fluorescence labeling or as protein-affinity ligands. We further found that some C8-substituted cytokinins exhibited no or lower cytotoxicity toward tobacco cells when compared to their parent compound. Therefore, we also present and discuss the cytotoxicity of all the compounds against three normal human cell lines.


Assuntos
Arabidopsis/química , Citocininas , Adenina/análogos & derivados , Adenina/química , Citocininas/síntese química , Citocininas/química , Citocininas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
18.
PLoS One ; 11(7): e0159269, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27434212

RESUMO

The herbicide 2,4-D exhibits an auxinic activity and therefore can be used as a synthetic and traceable analog to study auxin-related responses. Here we identified that not only exogenous 2,4-D but also its amide-linked metabolite 2,4-D-Glu displayed an inhibitory effect on plant growth via the TIR1/AFB auxin-mediated signaling pathway. To further investigate 2,4-D metabolite conversion, identity and activity, we have developed a novel purification procedure based on the combination of ion exchange and immuno-specific sorbents combined with a sensitive liquid chromatography-mass spectrometry method. In 2,4-D treated samples, 2,4-D-Glu and 2,4-D-Asp were detected at 100-fold lower concentrations compared to 2,4-D levels, showing that 2,4-D can be metabolized in the plant. Moreover, 2,4-D-Asp and 2,4-D-Glu were identified as reversible forms of 2,4-D homeostasis that can be converted to free 2,4-D. This work paves the way to new studies of auxin action in plant development.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Herbicidas/farmacologia , Homeostase , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Planta ; 243(6): 1311-26, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26838034

RESUMO

MAIN CONCLUSION: The key step in the mode of action of strigolactones is the enzymatic detachment of the D-ring. The thus formed hydroxy butenolide induces conformational changes of the receptor pocket which trigger a cascade of reactions in the signal transduction. Strigolactones (SLs) constitute a new class of plant hormones which are of increasing importance in plant science. For the last 60 years, they have been known as germination stimulants for parasitic plants. Recently, several new bio-properties of SLs have been discovered such as the branching factor for arbuscular mycorrhizal fungi, regulation of plant architecture (inhibition of bud outgrowth and of shoot branching) and the response to abiotic factors, etc. To broaden horizons and encourage new ideas for identifying and synthesising new and structurally simple SLs, this review is focused on molecular aspects of this new class of plant hormones. Special attention has been given to structural features, the mode of action of these phytohormones in various biological actions, the design of SL analogs and their applications.


Assuntos
Lactonas/química , Reguladores de Crescimento de Plantas/química , Germinação/efeitos dos fármacos , Lactonas/metabolismo , Lactonas/farmacologia , Micorrizas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/fisiologia , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...