Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745028

RESUMO

OBJECTIVE: To assess whether computational electroencephalogram (EEG) measures during the first day of life correlate to clinical outcomes in infants with perinatal asphyxia with or without hypoxic-ischemic encephalopathy (HIE). METHODS: We analyzed four-channel EEG monitoring data from 91 newborn infants after perinatal asphyxia. Altogether 42 automatically computed amplitude- and synchrony-related EEG features were extracted as 2-hourly average at very early (6 h) and early (24 h) postnatal age; they were correlated to the severity of HIE in all infants, and to four clinical outcomes available in a subcohort of 40 newborns: time to full oral feeding (nasogastric tube NGT), neonatal brain MRI, Hammersmith Infant Neurological Examination (HINE) at three months, and Griffiths Scales at two years. RESULTS: At 6 h, altogether 14 (33%) EEG features correlated significantly to the HIE grade ([r]= 0.39-0.61, p < 0.05), and one feature correlated to NGT ([r]= 0.50). At 24 h, altogether 13 (31%) EEG features correlated significantly to the HIE grade ([r]= 0.39-0.56), six features correlated to NGT ([r]= 0.36-0.49) and HINE ([r]= 0.39-0.61), while no features correlated to MRI or Griffiths Scales. CONCLUSIONS: Our results show that the automatically computed measures of early cortical activity may provide outcome biomarkers for clinical and research purposes. IMPACT: The early EEG background and its recovery after perinatal asphyxia reflect initial severity of encephalopathy and its clinical recovery, respectively. Computational EEG features from the early hours of life show robust correlations to HIE grades and to early clinical outcomes. Computational EEG features may have potential to be used as cortical activity biomarkers in early hours after perinatal asphyxia.

2.
J Neuroinflammation ; 20(1): 176, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507711

RESUMO

Systemic inflammation triggers protective as well as pro-inflammatory responses in the brain based on neuronal and/or cytokine signaling, and it associates with acutely and protractedly disrupted cognition. However, the multiple mechanisms underlying the peripheral-central inflammatory signaling are still not fully characterized. We used intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in freely moving mice with chronically implanted electrodes for recording of local field potentials (LFP) and electrocorticography (ECoG) in the hippocampus and neocortex, respectively. We show here that a sudden switch in the mode of network activity occurred in both areas starting at 10-15 min after the LPS injection, simultaneously with a robust change from exploration to sickness behavior. This switch in cortical mode commenced before any elevations in pro-inflammatory cytokines IL-1ß, TNFα, CCL2 or IL-6 were detected in brain tissue. Thereafter, this mode dominated cortical activity for the recording period of 3 h, except for a partial and transient recovery around 40 min post-LPS. These effects were closely paralleled by changes in ECoG spectral entropy. Continuous recordings for up to 72 h showed a protracted attenuation in hippocampal activity, while neocortical activity recovered after 48 h. The acute sickness behavior recovered by 72 h post-LPS. Notably, urethane (1.3 mg/kg) administered prior to LPS blocked the early effect of LPS on cortical activity. However, experiments under urethane anesthesia which were started 24 h post-LPS (with neuroinflammation fully developed before application of urethane) showed that both theta-supratheta and fast gamma CA1 activity were reduced, DG delta activity was increased, and sharp-wave ripples were abolished. Finally, we observed that experimental compensation of inflammation-induced hypothermia 24-48 h post-LPS promoted seizures and status epilepticus; and that LPS decreased the threshold of kainate-provoked seizures beyond the duration of acute sickness behavior indicating post-acute inflammatory hyperexcitability. Taken together, the strikingly fast development and initial independence of brain cytokines of the LPS-induced cortical mode, its spectral characteristics and simultaneity in hippocampus and neocortex, as well as inhibition by pre-applied urethane, strongly suggest that the underlying mechanisms are based on activation of the afferent vagus nerve and its mainly cholinergic ascending projections to higher brain areas.


Assuntos
Citocinas , Comportamento de Doença , Camundongos , Animais , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Encéfalo/metabolismo , Inflamação/induzido quimicamente , Convulsões , Uretana/farmacologia
3.
Cereb Cortex ; 33(10): 5906-5923, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573432

RESUMO

The Na-K-2Cl cotransporter NKCC1 is widely expressed in cells within and outside the brain. However, our understanding of its roles in brain functions throughout development, as well as in neuropsychiatric and neurological disorders, has been severely hindered by the lack of reliable data on its developmental and (sub)cellular expression patterns. We provide here the first properly controlled analysis of NKCC1 protein expression in various cell types of the mouse brain using custom-made antibodies and an NKCC1 knock-out validated immunohistochemical procedure, with parallel data based on advanced mRNA approaches. NKCC1 protein and mRNA are expressed at remarkably high levels in oligodendrocytes. In immature neurons, NKCC1 protein was located in the somata, whereas in adult neurons, only NKCC1 mRNA could be clearly detected. NKCC1 immunoreactivity is also seen in microglia, astrocytes, developing pericytes, and in progenitor cells of the dentate gyrus. Finally, a differential expression of NKCC1 splice variants was observed, with NKCC1a predominating in non-neuronal cells and NKCC1b in neurons. Taken together, our data provide a cellular basis for understanding NKCC1 functions in the brain and enable the identification of major limitations and promises in the development of neuron-targeting NKCC1-blockers.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Hipocampo/metabolismo
4.
Front Neurosci ; 16: 935268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440290

RESUMO

Transcranial magnetic stimulation (TMS) is widely applied on humans for research and clinical purposes. TMS studies on small animals, e.g., rodents, can provide valuable knowledge of the underlying neurophysiological mechanisms. Administering TMS on small animals is, however, prone to technical difficulties, mainly due to their small head size. In this study, we aimed to develop an energy-efficient coil and a compatible experimental set-up for administering TMS on rodents. We applied a convex optimization process to develop a minimum-energy coil for TMS on rats. As the coil windings of the optimized coil extend to a wide region, we designed and manufactured a holder on which the rat lies upside down, with its head supported by the coil. We used the set-up to record TMS-electromyography, with electromyography recorded from limb muscles with intramuscular electrodes. The upside-down placement of the rat allowed the operator to easily navigate the TMS without the coil blocking their field of view. With this paradigm, we obtained consistent motor evoked potentials from all tested animals.

5.
Epilepsia ; 62(8): 1971-1984, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34180051

RESUMO

OBJECTIVE: Seizures are common in neonates recovering from birth asphyxia but there is general consensus that current pharmacotherapy is suboptimal and that novel antiseizure drugs are needed. We recently showed in a rat model of birth asphyxia that seizures are triggered by the post-asphyxia recovery of brain pH. Here our aim was to investigate whether carbonic anhydrase inhibitors (CAIs), which induce systemic acidosis, block the post-asphyxia seizures. METHODS: The CAIs acetazolamide (AZA), benzolamide (BZA), and ethoxzolamide (EZA) were administered intraperitoneally or intravenously to 11-day-old rats exposed to intermittent asphyxia (30 min; three 7+3 min cycles of 9% and 5% O2 at 20% CO2 ). Electrode measurements of intracortical pH, Po2 , and local field potentials (LFPs) were made under urethane anesthesia. Convulsive seizures and blood acid-base parameters were examined in freely behaving animals. RESULTS: The three CAIs decreased brain pH by 0.14-0.17 pH units and suppressed electrographic post-asphyxia seizures. AZA, BZA, and EZA differ greatly in their lipid solubility (EZA > AZA > BZA) and pharmacokinetics. However, there were only minor differences in the delay (range 0.8-3.7 min) from intraperitoneal application to their action on brain pH. The CAIs induced a modest post-asphyxia elevation of brain Po2 that had no effect on LFP activity. AZA was tested in freely behaving rats, in which it induced a respiratory acidosis and decreased the incidence of convulsive seizures from 9 of 20 to 2 of 17 animals. SIGNIFICANCE: AZA, BZA, and EZA effectively block post-asphyxia seizures. Despite the differences in their pharmacokinetics, they had similar effects on brain pH, which indicates that their antiseizure mode of action was based on respiratory (hypercapnic) acidosis resulting from inhibition of blood-borne and extracellular vascular carbonic anhydrases. AZA has been used for several indications in neonates, suggesting that it can be safely repurposed for the treatment of neonatal seizures as an add-on to the current treatment regimen.


Assuntos
Acidose , Asfixia Neonatal , Acetazolamida/uso terapêutico , Animais , Asfixia/complicações , Asfixia/tratamento farmacológico , Inibidores da Anidrase Carbônica , Humanos , Recém-Nascido , Ratos , Convulsões/tratamento farmacológico , Convulsões/etiologia
6.
Acta Physiol (Oxf) ; 229(3): e13467, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32174009

RESUMO

AIM: To study brain-sparing physiological responses in a rodent model of birth asphyxia which reproduces the asphyxia-defining systemic hypoxia and hypercapnia. METHODS: Steady or intermittent asphyxia was induced for 15-45 minutes in anaesthetized 6- and 11-days old rats and neonatal guinea pigs using gases containing 5% or 9% O2 plus 20% CO2 (in N2 ). Hypoxia and hypercapnia were induced with low O2 and high CO2 respectively. Oxygen partial pressure (PO2 ) and pH were measured with microsensors within the brain and subcutaneous ("body") tissue. Blood lactate was measured after asphyxia. RESULTS: Brain and body PO2 fell to apparent zero with little recovery during 5% O2 asphyxia and 5% or 9% O2 hypoxia, and increased more than twofold during 20% CO2 hypercapnia. Unlike body PO2 , brain PO2 recovered rapidly to control after a transient fall (rat), or was slightly higher than control (guinea pig) during 9% O2 asphyxia. Asphyxia (5% O2 ) induced a respiratory acidosis paralleled by a progressive metabolic (lact)acidosis that was much smaller within than outside the brain. Hypoxia (5% O2 ) produced a brain-confined alkalosis. Hypercapnia outlasting asphyxia suppressed pH recovery and prolonged the post-asphyxia PO2 overshoot. All pH changes were accompanied by consistent shifts in the blood-brain barrier potential. CONCLUSION: Regardless of brain maturation stage, hypercapnia can restore brain PO2 and protect the brain against metabolic acidosis despite compromised oxygen availability during asphyxia. This effect extends to the recovery phase if normocapnia is restored slowly, and it is absent during hypoxia, demonstrating that exposure to hypoxia does not mimic asphyxia.


Assuntos
Asfixia Neonatal , Encéfalo/fisiologia , Oxigênio/fisiologia , Animais , Modelos Animais de Doenças , Cobaias , Humanos , Concentração de Íons de Hidrogênio , Hipercapnia , Hipóxia , Recém-Nascido , Ratos
7.
Toxins (Basel) ; 8(12)2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916957

RESUMO

Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.


Assuntos
Genoma , Serpentes/genética , Animais , Sequências Repetitivas de Ácido Nucleico , Toxinas Biológicas/genética
8.
Epilepsia ; 57(1): e1-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26547277

RESUMO

Febrile seizures are the most common type of convulsive events in children. It is generally assumed that the generalization of these seizures is a result of brainstem invasion by the initial limbic seizure activity. Using precollicular transection in 13-day-old rats to isolate the forebrain from the brainstem, we demonstrate that the forebrain is not required for generation of tonic-clonic convulsions induced by hyperthermia or kainate. Compared with sham-operated littermate controls, latency to onset of convulsions in both models was significantly shorter in pups that had undergone precollicular transection, indicating suppression of the brainstem seizure network by the forebrain in the intact animal. We have shown previously that febrile seizures are precipitated by hyperthermia-induced respiratory alkalosis. Here, we show that triggering of hyperthermia-induced hyperventilation and consequent convulsions in transected animals are blocked by diazepam. The present data suggest that the role of endogenous brainstem activity in triggering tonic-clonic seizures should be re-evaluated in standard experimental models of limbic seizures. Our work sheds new light on the mechanisms that generate febrile seizures in children and, therefore, on how they might be treated.


Assuntos
Hipertermia Induzida/efeitos adversos , Prosencéfalo/fisiologia , Convulsões/etiologia , Animais , Animais Recém-Nascidos , Anticonvulsivantes/uso terapêutico , Temperatura Corporal/fisiologia , Denervação , Diazepam/uso terapêutico , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Masculino , Ratos , Ratos Wistar , Convulsões/tratamento farmacológico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...