Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535792

RESUMO

Five peptides were isolated from the venom of the Mexican scorpion Centruroides bonito by chromatographic procedures (molecular weight sieving, ion exchange columns, and HPLC) and were denoted Cbo1 to Cbo5. The first four peptides contain 66 amino acid residues and the last one contains 65 amino acids, stabilized by four disulfide bonds, with a molecular weight spanning from about 7.5 to 7.8 kDa. Four of them are toxic to mice, and their function on human Na+ channels expressed in HEK and CHO cells was verified. One of them (Cbo5) did not show any physiological effects. The ones toxic to mice showed that they are modifiers of the gating mechanism of the channels and belong to the beta type scorpion toxin (ß-ScTx), affecting mainly the Nav1.6 channels. A phylogenetic tree analysis of their sequences confirmed the high degree of amino acid similarities with other known bona fide ß-ScTx. The envenomation caused by this venom in mice is treated by using commercially horse antivenom available in Mexico. The potential neutralization of the toxic components was evaluated by means of surface plasmon resonance using four antibody fragments (10FG2, HV, LR, and 11F) which have been developed by our group. These antitoxins are antibody fragments of single-chain antibody type, expressed in E. coli and capable of recognizing Cbo1 to Cbo4 toxins to various degrees.


Assuntos
Animais Peçonhentos , Perciformes , Peçonhas , Humanos , Cricetinae , Animais , Cavalos , Camundongos , Escorpiões , Cricetulus , Escherichia coli , Filogenia , Antivenenos , Aminoácidos , Fragmentos de Imunoglobulinas , Peptídeos
2.
Mol Immunol ; 164: 79-87, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980772

RESUMO

The first toxic component identified against mammals in the venom from Centruroides tecomanus scorpion from Colima, Mexico was Ct1a toxin, which was neutralized by human single chain variable fragment (scFv) RAS27. Venom characterization from these scorpions collected on the Pacific coast of Colima, enabled the identification of a second component of medical importance named Ct71 toxin. Amino acid sequence of Ct71 shares a high identity with Chui5 toxin from C. huichol scorpion, which was neutralized by scFv HV. For this reason, the kinetic parameters of interaction between Ct71 toxin and scFv HV were determined by surface plasmon resonance. Results showed a significantly higher affinity for Ct71 as compared to Chui5. As expected, this toxin was neutralized by scFv HV. The injection of a mixture of scFvs HV and RAS27, resulted in the neutralization of C. tecomanus venom, corroborating that human recombinant antibody fragments can efficiently contribute to the neutralization of medically important toxins and their respective venoms from Mexican scorpions.


Assuntos
Venenos de Escorpião , Anticorpos de Cadeia Única , Animais , Humanos , México , Proteínas Recombinantes/química , Escorpiões
3.
Toxicon ; 233: 107232, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536653

RESUMO

Scorpions are a group of arthropods that strike fear in many people due to their severe medical symptoms, even death, caused by their venomous stings. Even so, not all scorpion species contain harmful venoms against humans but still have valuable bioactive molecules, which could be used in developing new pharmaceutical leads for treating important diseases. This work conducted a comprehensive analysis of the venom from the scorpion Thorellius intrepidus. The venom of T. intrepidus was separated by size exclusion chromatography, and four main fractions were obtained. Fraction IV (FIV) contained small molecules representing over 90% of the total absorbance at 280 nm. Analysis of fraction FIV by RP-HPLC indicated the presence of three main molecules (FIV.1, FIV.2, and FIV.3) with similar UV absorbance spectra profiles. The molecular masses of FIV.1, FIV.2, and FIV.3 were determined, resulting in 175.99, 190.07, and 218.16 Da, respectively. Further confirmation through 1H-NMR and 13C-NMR analyses revealed that these molecules were serotonin, N-methylserotonin, and bufotenidine. These intriguing compounds are speculated to play a pivotal role in self-defense and increasing venom toxicity and could also offer promising biotechnological applications as small bioactive molecules.


Assuntos
Picadas de Escorpião , Venenos de Escorpião , Animais , Humanos , Escorpiões , Peçonhas , Venenos de Escorpião/química
4.
Toxicon ; 227: 107082, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36948303

RESUMO

In recent years, morbidity caused by scorpion sting of the species Tityus championi has increased in Panama. Therefore, the LD50 was determined by intravenous injection in 2.9 mg/kg and the venom of T. championi was separated using a HPLC system and their fractions were tested for biological activities in mice to identify the most toxic fractions to mammals. In addition, the venom fractions were also tested against invertebrates to look for insect-specific toxin peptides. The most toxic fractions were analyzed by MS/MS spectrometry. The primary structures of T. championi venom peptides with the most relevant activity were obtained, and the primary structure of one of most neurotoxic peptides was found at least in other four species of Tityus from Panama. This neurotoxin is quite important to be used as a protein target to be neutralized if developing antivenoms against the sting of this Panamanian scorpion or other relevant species of genera Tityus in the country.


Assuntos
Venenos de Escorpião , Peçonhas , Animais , Camundongos , Peçonhas/metabolismo , Escorpiões/química , Proteômica , Espectrometria de Massas em Tandem , Peptídeos/química , Venenos de Escorpião/química , Mamíferos/metabolismo
5.
Mol Immunol ; 155: 165-174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36812764

RESUMO

Previously, it was demonstrated that from the single chain fragment variable (scFv) 3F it is possible to generate variants capable of neutralizing the Cn2 and Css2 toxins, as well as their respective venoms (Centruroides noxius and Centruroides suffusus). Despite this success, it has not been easy to modify the recognition of this family of scFvs toward other dangerous scorpion toxins. The analysis of toxin-scFv interactions and in vitro maturation strategies allowed us to propose a new maturation pathway for scFv 3F to broaden recognition toward other Mexican scorpion toxins. From maturation processes against toxins CeII9 from C. elegans and Ct1a from C. tecomanus, the scFv RAS27 was developed. This scFv showed an increased affinity and cross-reactivity for at least 9 different toxins while maintaining recognition for its original target, the Cn2 toxin. In addition, it was confirmed that it can neutralize at least three different toxins. These results constitute an important advance since it was possible to improve the cross-reactivity and neutralizing capacity of the scFv 3F family of antibodies.


Assuntos
Venenos de Escorpião , Animais , Humanos , Sequência de Aminoácidos , Caenorhabditis elegans , Anticorpos Neutralizantes , Fragmentos de Imunoglobulinas
6.
Toxicon ; 223: 107012, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592762

RESUMO

The methylotrophic yeast Pichia pastoris has been one of the most widely used organisms in recent years as an expression system for a wide variety of recombinant proteins with therapeutic potential. Its popularity as an alternative system to Escherichia coli is mainly due to the easy genetic manipulation and the ability to produce high levels of heterologous proteins, either intracellularly or extracellularly. Being a eukaryotic organism, P. pastoris carries out post-translational modifications that allow it to produce soluble and correctly folded recombinant proteins. This work, evaluated the expression capacity in P. pastoris of two single-chain variable fragments (scFvs) of human origin, 10FG2 and LR. These scFvs were previously obtained by directed evolution against scorpion venom toxins and are able to neutralize different toxins and venoms of Mexican species. The yield obtained in P. pastoris was higher than that obtained in bacterial periplasm (E. coli), and most importantly, biochemical and functional properties were not modified. These results confirm that P. pastoris yeast can be a good expression system for the production of antibody fragments of a new recombinant antivenom.


Assuntos
Escorpiões , Peçonhas , Animais , Humanos , Escorpiões/química , Peçonhas/metabolismo , Saccharomyces cerevisiae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/química , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/metabolismo
7.
Toxicon ; 222: 106985, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436588

RESUMO

Scorpine is an antimicrobial and antimalarial peptide isolated from Pandinus imperator scorpion venom. As there are few functional and structural studies reported on scorpine-like peptides, we investigated the recombinant truncated N- and C-terminal domains as well as complete scorpine using biological assays and determined the N- and C-terminal structures using solution nuclear magnetic resonance. The study was conducted using recombinant N- and C-terminal peptides and complete scorpine expressed in Escherichia coli. The results showed that N-scorpine presented a random coil structure in water and adopted α-helical folding in the presence of 50% trifluoroethanol (TFE). C-scorpine contains three disulfide bonds with two structural domains: an unstructured N-terminal domain in water that can form a typical secondary alpha-helix structure in 50% TFE and a C-terminal domain with the CS-αß motif. Our findings demonstrate cytolytic activity associated with C-scorpine, N-scorpine, and scorpine, as well as channel blocking activity associated with the C-scorpine domain.


Assuntos
Anti-Infecciosos , Venenos de Escorpião , Peptídeos/química , Defensinas/química , Domínios Proteicos , Venenos de Escorpião/química
8.
Vet Immunol Immunopathol ; 253: 110504, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36327940

RESUMO

Horses have played a prominent role in shaping our modern world, with important effects on health. Unfortunately, better characterization of the horse immune system is still needed. In this report, using flow cytometry techniques, four monoclonal antibodies against horse CD11c integrin were characterized and described for their ability to provide a positive recognition signal in peripheral blood mononuclear cells. Further immune cell phenotype experiments were performed using MHC-II, CD14, TLR4 and the specific anti-horse CD11c monoclonal antibody (1C4). With this staining panel, it was possible to detect a cell population defined by CD11c+MHC-II+TLR4+CD14low, which could be considered as putative dendritic cells. This manuscript shows that a new monoclonal antibody (1C4) can be used for the characterization of dendritic cells and their different lineages, opening the possibility of better understanding the mechanisms of immunity in horses.


Assuntos
Leucócitos Mononucleares , Receptor 4 Toll-Like , Animais , Cavalos , Citometria de Fluxo/veterinária , Citometria de Fluxo/métodos , Antígeno CD11c , Anticorpos Monoclonais , Células Dendríticas
9.
Toxins (Basel) ; 14(6)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35737030

RESUMO

Centruroides huichol scorpion venom is lethal to mammals. Analysis of the venom allowed the characterization of four lethal toxins named Chui2, Chui3, Chui4, and Chui5. scFv 10FG2 recognized well all toxins except Chui5 toxin, therefore a partial neutralization of the venom was observed. Thus, scFv 10FG2 was subjected to three processes of directed evolution and phage display against Chui5 toxin until obtaining scFv HV. Interaction kinetic constants of these scFvs with the toxins were determined by surface plasmon resonance (SPR) as well as thermodynamic parameters of scFv variants bound to Chui5. In silico models allowed to analyze the molecular interactions that favor the increase in affinity. In a rescue trial, scFv HV protected 100% of the mice injected with three lethal doses 50 (LD50) of venom. Moreover, in mix-type neutralization assays, a combination of scFvs HV and 10FG2 protected 100% of mice injected with 5 LD50 of venom with moderate signs of intoxication. The ability of scFv HV to neutralize different toxins is a significant achievement, considering the diversity of the species of Mexican venomous scorpions, so this scFv is a candidate to be part of a recombinant anti-venom against scorpion stings in Mexico.


Assuntos
Venenos de Escorpião , Escorpiões , Sequência de Aminoácidos , Animais , Fragmentos de Imunoglobulinas , Mamíferos , México , Camundongos , Proteínas Recombinantes , Venenos de Escorpião/toxicidade
10.
J Gen Physiol ; 154(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699659

RESUMO

The Cm28 in the venom of Centruroides margaritatus is a short peptide consisting of 27 amino acid residues with a mol wt of 2,820 D. Cm28 has <40% similarity with other known α-KTx from scorpions and lacks the typical functional dyad (lysine-tyrosine) required to block KV channels. However, its unique sequence contains the three disulfide-bond traits of the α-KTx scorpion toxin family. We propose that Cm28 is the first example of a new subfamily of α-KTxs, registered with the systematic number α-KTx32.1. Cm28 inhibited voltage-gated K+ channels KV1.2 and KV1.3 with Kd values of 0.96 and 1.3 nM, respectively. There was no significant shift in the conductance-voltage (G-V) relationship for any of the channels in the presence of toxin. Toxin binding kinetics showed that the association and dissociation rates are consistent with a bimolecular interaction between the peptide and the channel. Based on these, we conclude that Cm28 is not a gating modifier but rather a pore blocker. In a selectivity assay, Cm28 at 150 nM concentration (>100× Kd value for KV1.3) did not inhibit KV1.5, KV11.1, KCa1.1, and KCa3.1 K+ channels; NaV1.5 and NaV1.4 Na+ channels; or the hHV1 H+ channel but blocked ∼27% of the KV1.1 current. In a biological functional assay, Cm28 strongly inhibited the expression of the activation markers interleukin-2 receptor and CD40 ligand in anti-CD3-activated human CD4+ effector memory T lymphocytes. Cm28, due to its unique structure, may serve as a template for the generation of novel peptides targeting KV1.3 in autoimmune diseases.


Assuntos
Venenos de Escorpião , Sequência de Aminoácidos , Animais , Humanos , Peptídeos/química , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Escorpiões/química , Escorpiões/metabolismo
11.
Toxins (Basel) ; 14(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448857

RESUMO

Enzymes are an integral part of animal venoms. Unlike snakes, in which enzymes play a primary role in envenomation, in scorpions, their function appears to be ancillary in most species. Due to this, studies on the diversity of scorpion venom components have focused primarily on the peptides responsible for envenomation (toxins) and a few others (e.g., antimicrobials), while enzymes have been overlooked. In this work, a comprehensive study on enzyme diversity in scorpion venoms was performed by transcriptomic and proteomic techniques. Enzymes of 63 different EC types were found, belonging to 330 orthogroups. Of them, 24 ECs conform the scorpion venom enzymatic core, since they were determined to be present in all the studied scorpion species. Transferases and lyases are reported for the first time. Novel enzymes, which can play different roles in the venom, including direct toxicity, as venom spreading factors, activators of venom components, venom preservatives, or in prey pre-digestion, were described and annotated. The expression profile for transcripts coding for venom enzymes was analyzed, and shown to be similar among the studied species, while being significantly different from their expression pattern outside the telson.


Assuntos
Venenos de Escorpião , Animais , Peptídeos/metabolismo , Proteômica/métodos , Venenos de Escorpião/metabolismo , Venenos de Escorpião/toxicidade , Escorpiões/genética , Transcriptoma
12.
Biochem Pharmacol ; 199: 115023, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358481

RESUMO

Kv1.3 K+ channels play a central role in the regulation of T cell activation and Ca2+ signaling under physiological and pathophysiological conditions. Peptide toxins targeting Kv1.3 have a significant therapeutic potential in the treatment of autoimmune diseases; thus, the discovery of new toxins is highly motivated. Based on the transcriptome analysis of the venom gland of V. mexicanus smithi a novel synthetic peptide, sVmKTx was generated, containing 36 amino acid residues. sVmKTx shows high sequence similarity to Vm24, a previously characterized peptide from the same species, but contains a Glu at position 32 as opposed to Lys32 in Vm24. Vm24 inhibits Kv1.3 with high affinity (Kd = 2.9 pM). However, it has limited selectivity (~1,500-fold) for Kv1.3 over hKv1.2, hKCa3.1, and mKv1.1. sVmKTx displays reduced Kv1.3 affinity (Kd = 770 pM) but increased selectivity for Kv1.3 over hKv1.2 (~9,000-fold) as compared to Vm24, other channels tested in the panel (hKCa3.1, hKv1.1, hKv1.4, hKv1.5, rKv2.1, hKv11.1, hKCa1.1, hNav1.5) were practically insensitive to the toxin at 2.5 µM. Molecular dynamics simulations showed that introduction of a Glu instead of Lys at position 32 led to a decreased structural fluctuation of the N-terminal segment of sVmKTx, which may explain its increased selectivity for Kv1.3. sVmKTx at 100 nM concentration decreased the expression level of the Ca2+ -dependent T cell activation marker, CD40 ligand. The high affinity block of Kv1.3 and increased selectivity over the natural peptide makes sVmKTx a potential candidate for Kv1.3 blockade-mediated treatment of autoimmune diseases.


Assuntos
Doenças Autoimunes , Venenos de Escorpião , Perfilação da Expressão Gênica , Humanos , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Linfócitos T/metabolismo
13.
Toxicon X ; 13: 100090, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35024608

RESUMO

BACKGROUND: The development of more effective antivenoms remains a necessity for countries where scorpionism is a public health problem. Also, the regionalization of antivenoms may be important for some countries with special scorpionism characteristics. OBJECTIVE: Production of antibodies capable of neutralizing the lethal effect of the venom of three scorpion species from Panama. METHODS: The primary structures of two neurotoxins from T. pachyurus, one from T. cerroazul and another from C. bicolor were elucidated using N-terminal amino acid degradation and Sanger gene cloned sequencing. The obtained mRNA transcripts were cloned and expressed using E. coli vectors. Different bacterial expression conditions were tested and the best culture conditions for each expressed protein is reported. The expressed scorpion toxins were purified by chromatographic methods and used as immunogens in rabbits. RESULTS: The antibodies produced under the reported immunization scheme show better neutralization (ED50) than other reported commercial antivenoms used to neutralize similar species scorpion venoms under similar LD50 conditions. CONCLUSION: The information reported here shows the proof of concept for selecting recombinant immunogens with the ability to produce antibodies for neutralizing the lethal effects of the most important medical species of scorpions in Panama.

14.
Toxins (Basel) ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34679001

RESUMO

A fundamental issue of the characterization of single-chain variable fragments (scFvs), capable of neutralizing scorpion toxins, is their cross-neutralizing ability. This aspect is very important in Mexico because all scorpions dangerous to humans belong to the Centruroides genus, where toxin sequences show high identity. Among toxin-neutralizing antibodies that were generated in a previous study, scFv 10FG2 showed a broad cross-reactivity against several Centruroides toxins, while the one of scFv LR is more limited. Both neutralizing scFvs recognize independent epitopes of the toxins. In the present work, the neutralization capacity of these two scFvs against two medically important toxins of the venom of Centruroides sculpturatus Ewing was evaluated. The results showed that these toxins are recognized by both scFvs with affinities between 1.8 × 10-9 and 6.1 × 10-11 M. For this reason, their ability to neutralize the venom was evaluated in mice, where scFv 10FG2 showed a better protective capacity. A combination of both scFvs at a molar ratio of 1:5:5 (toxins: scFv 10FG2: scFv LR) neutralized the venom without the appearance of any signs of intoxication. These results indicate a complementary activity of these two scFvs during venom neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , Venenos de Escorpião/imunologia , Escorpiões/química , Anticorpos de Cadeia Única/imunologia , Animais , Reações Cruzadas , Feminino , Humanos , Camundongos
15.
Peptides ; 141: 170553, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862164

RESUMO

Six peptides, belonging to the NDBP-4 family of scorpion antimicrobial peptides were structurally and functionally characterized. The sequence of the mature peptides VpCT1, VpCT2, VpCT3 and VpCT4 was inferred by transcriptomic analysis of the venom gland of the scorpion Mesomexovis variegatus. Analysis of their amino acid sequences revealed patterns that are also present in previously reported peptides that show differences in their hemolytic and antimicrobial activities in vitro. Two other variants, VpCT3W and VpCTConsensus were designed to evaluate the effect of sequence changes of interest on their structure and activity. The synthesized peptides were evaluated by circular dichroism to confirm their α-helical conformation in a folding promoting medium. The peptides were assayed on two Gram-positive and three Gram-negative bacterial strains, and on two yeast strains. They preferentially inhibited the growth of Staphylococcus aureus, were mostly ineffective on Pseudomonas aeruginosa, and moderately inhibited the growth of Candida yeasts. All six peptides exhibited hemolytic activity on human erythrocytes in the range of 4.8-83.7 µM. VpCT3W displayed increased hemolytic and anti-yeast activities, but showed no change in antibacterial activity, relative to its parental peptide, suggesting that Trp6 may potentiate the interaction of VpCT3 with eukaryotic cell membranes. VpCTConsensus showed broader and enhanced antimicrobial activity relative to several of the natural peptides. The results presented here contribute new information on the structure and function of NDBP-4 antimicrobial peptides and provides clues for the design of less hemolytic and more effective antimicrobial peptides.


Assuntos
Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Escorpiões/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos Antimicrobianos/síntese química , Dicroísmo Circular , Hemolíticos/química , Hemolíticos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
16.
Toxicon ; 197: 114-125, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901550

RESUMO

The peptide, denominated Ct1a, is a ß-toxin of 66 amino acids, isolated from venom of the scorpion, Centruroides tecomanus, collected in Colima, Mexico. This toxin was purified using size exclusion, cationic exchange, and reverse phase chromatography. It is the most abundant toxin, representing 1.7% of the soluble venom. Its molecular mass of 7588.9 Da was determined by mass spectrometry. The amino acid sequence was determined by Edman degradation and confirmed by transcriptomic analysis. Since neurons of the suprachiasmatic nucleus (SCN) maintain a spontaneous firing rate (SFR), we evaluated the physiological effects of toxin Ct1a on these neurons. The SFR exhibited a bimodal concentration-dependent response: 100 nM of Ct1a increased the SFR by 223%, whereas 500 nM and 1000 nM reduced it to 42% and 7%, respectively. Control experiments, consisting of recordings of the SFR during a time similar to that used in Ct1a testing, showed stability throughout the trials. Experiments carried out with denatured Ct1a toxin (500 nM) caused no variation in SFR recordings. Action potentials of SCN neurons, before and after Ct1a (100 nM) showed changes in the time constants of depolarization and repolarization phases, amplitude, and half-time. Finally, recordings of hNav1.6 sodium currents indicated that Ct1a shifts the channel activation to a more negative potential and reduces the amplitude of the peak current. These results all demonstrate that toxin Ct1a affects the SFR of SCN neurons by acting upon sodium channels of sub-type 1.6, implicating them in regulation of the SFR of SCN neurons.


Assuntos
Venenos de Escorpião , Escorpiões , Animais , México , Neurônios , Núcleo Supraquiasmático , Peçonhas
17.
J Med Chem ; 63(17): 9500-9511, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787139

RESUMO

Peptidase inhibitors (PIs) have been broadly studied due to their wide therapeutic potential for human diseases. A potent trypsin inhibitor from Tityus obscurus scorpion venom was characterized and named ToPI1, with 33 amino acid residues and three disulfide bonds. The X-ray structure of the ToPI1:trypsin complex, in association with the mass spectrometry data, indicate a sequential set of events: the complex formation with the inhibitor Lys32 in the trypsin S1 pocket, the inhibitor C-terminal residue Ser33 cleavage, and the cyclization of ToPI1 via a peptide bond between residues Ile1 and Lys32. Kinetic and thermodynamic characterization of the complex was obtained. ToPI1 shares no sequence similarity with other PIs characterized to date and is the first PI with CS-α/ß motif described from animal venoms. In its cyclic form, it shares structural similarities with plant cyclotides that also inhibit trypsin. These results bring new insights for studies with venom compounds, PIs, and drug design.


Assuntos
Ciclotídeos/química , Ciclotídeos/metabolismo , Venenos de Escorpião/química , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Ciclização , Modelos Moleculares , Ligação Proteica , Conformação Proteica
18.
Toxicon ; 184: 158-166, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32569846

RESUMO

Cl13 is a toxin purified previously from the venom of the Mexican scorpion Centruroides limpidus. This toxin affects the function of voltage gated Na+-channels, human subtypes Nav1.4, Nav1.5 and Nav1.6 in a similar manner as other known ß-toxins from scorpion venoms. Here, we report a correction of the primary structure of Cl13, previously published. The peptide does contain 66 amino acids, but residue 58 is a tryptophan and the last C-terminal amino acid is an amidated lysine, instead of arginine. The main contribution of this communication is the determination of the 3D-structure of Cl13, by solution NMR, showing that Cl13 has the classical cysteine-stabilized α/ß (CSα/ß) folding. It has a triple stranded antiparallel beta sheet commonly present in scorpion sodium channel ß-toxins. In addition, we report and discuss a comparison of Cl13 structure with two other toxins (Cn2 and Css2) from scorpions of the same genus Centruroides, which shows important surface similarities with the structure reported here. Finally, the lack of neutralization of Cl13 toxin by two single-chain antibody fragments (scFvs), named LR and 10FG2, which are capable of neutralizing various toxins from Mexican scorpions, is revised. In particular, 10FG2 is capable of neutralizing toxins Cll1 and Cll2 of the same scorpion C. limpidus. The reasons why LR and 10FG2 are unable of neutralizing Cl13 toxin are discussed.


Assuntos
Venenos de Escorpião/química , Sequência de Aminoácidos , Animais , Cisteína , Espectroscopia de Ressonância Magnética , México , Escorpiões
19.
J Proteomics ; 225: 103863, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526478

RESUMO

Proteomic characterization of Micrurus browni browni venom showed approximately 41 components belonging to 9 protein families, mainly phospholipases A2 (PLA2s) and three-finger toxins (3FTxs). Venom gland transcriptome yielded 39 venom transcripts belonging to 10 protein families. Functional characterization identified a multimeric toxin, here designated Brownitoxin-1, which comprises at least one PLA2 and one 3FTx. Its components have no or very low lethality individually but become extremely lethal when combined; both were partially characterized. Other two lethal components were identified: A neurotoxic PLA2, and a postsynaptic α-neurotoxin. LD50s as well as PLA2 and nAChR-blocking activities were determined for whole venom and isolated components. Application of venom to murine neuromuscular preparations caused a progressive decrease of twitch force that was irreversible after washing. Inhibition of PLA2 activity with p-bromophenacyl bromide (pBPB) showed that approximately 90% of toxicity is dependent on this activity. Non-lethal components include diverse 3FTxs, at least three enzymatically active PLA2s and the nociceptive toxin MitTx. No evidence of specificity towards prey was observed. This work is one of the most complete characterizations of a coral snake venom so far and its findings highlight the relevance of protein complexes in venom function. SIGNIFICANCE: This study represents a profound analysis of the venom of the coral snake Micrurus browni browni, including a venom proteome, venom gland transcriptomic data and functional studies of whole venom and isolated toxins. It significantly contributes to the understanding of North American coral snake venoms, which are currently largely unknown. It includes characterization of relevant venom components, one of which represents the first description of a lethal multimeric neurotoxin in coral snake venom. This work highlights the importance of protein complexes in coral snake venom and could serve as a basis for the finding of several other multimeric toxins. Finally, we report the absence of taxon specificity, which has been previously reported in the venoms of other snakes of the same genus.


Assuntos
Cobras Corais , Animais , Cobras Corais/genética , Venenos Elapídicos/toxicidade , Elapidae , Camundongos , Neurotoxinas/toxicidade , Fosfolipases A2 , Proteômica , Transcriptoma
20.
Toxicon ; 184: 10-18, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32479835

RESUMO

In this communication the isolation, chemical and physiological characterization of three new toxins from the scorpion Centruroides baergi are reported. Their immunoreactive properties with scFvs generated in our group are described. The three new peptides, named Cb1, Cb2 and Cb3 affect voltage-dependent Na+ channels in a differential manner. These characteristics, explain the toxicity of this venom. Molecular interactions in real-time among these toxins and the best recombinant antibodies generated in our group, revealed that one of them was able to neutralize the main toxin of this venom (Cb1). These results represent an important advance for the neutralization of this venom and serve as the basis for generating new scFvs that will allow the neutralization of similar toxins from other venoms that have no yet been neutralized.


Assuntos
Venenos de Escorpião/análise , Escorpiões , Sequência de Aminoácidos , Animais , Fenômenos Eletrofisiológicos , México , Proteínas Recombinantes , Venenos de Escorpião/imunologia , Alinhamento de Sequência , Anticorpos de Cadeia Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...