Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169082, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056654

RESUMO

Conventional wastewater treatment (WWT) is not able to recycle nutrients from the wastewater (WW) directly. Microalgae integrate the valuable nutrients nitrogen and phosphorus within their biomass very efficiently, making them predestined for an application in WWT. Nevertheless, microalgae-based processes are driven by natural sunlight as energy source, making a continuous process mode during day and night difficult. The aim of this study was therefore to investigate metabolic activities of the continuously cultivated microalgae Chlorella vulgaris at light and dark periods (16 h,8 h) with focus on nutrient uptake during night from a synthetic WW. Varying the dilution rate D (D = 0.0-1.0 d-1 in 0.1 d-1-steps) causes different limitations for algae growth. Nutrient limitations at low D's cause maximum accumulation of intracellular storage components (sum of carbohydrates and lipids) of ~70 % of dry biomass, starch is converted to lipids at the absence of light. From middle to high D's, the growth rate is determined by light limitation, reducing the intracellular storage components to ~20 % of dry biomass. Complete nutrient uptake is measurable up to D = 0.5 d-1, marking the maximum operating point for wastewater purification. At that point, cells are characterised by high protein (up to 57%DBM) and pigment (up to 6.9%DBM) quotas. During the night, the build-up of proteins at the degradation of intracellular storage components is furthermore visible. Applying the concept of active biomass (cells without storage components), a constant cellular protein (~68%ABM) and nitrogen quota (11.94%ABM) was revealed. A nitrogen spiking experiment clearly showed nitrogen uptake and proliferation during the night period. Based on the experimental data, a window of operation for a continuous WWT process was designed, allowing the hypothesis that continuous WWT using microalgae during day and night operation is possible without the supplementation of artificial light. This revealed the system's capacity to treat WW throughout 24 h applying cell recycling and storage of carbohydrate-rich biomass. At the end of the night, protein-rich biomass is available for further valorisation.


Assuntos
Chlorella vulgaris , Microalgas , Purificação da Água , Chlorella vulgaris/metabolismo , Microalgas/metabolismo , Águas Residuárias , Nitrogênio/análise , Biomassa , Lipídeos
2.
Front Bioeng Biotechnol ; 10: 837965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252145

RESUMO

The moss Physcomitrella is an interesting production host for recombinant biopharmaceuticals. Here we produced MFHR1, a synthetic complement regulator which has been proposed for the treatment of diseases associated to the complement system as part of human innate immunity. We studied the impact of different operation modes for the production process in 5 L stirred-tank photobioreactors. The total amount of recombinant protein was doubled by using fed-batch or batch compared to semi-continuous operation, although the maximum specific productivity (mg MFHR1/g FW) increased just by 35%. We proposed an unstructured kinetic model which fits accurately with the experimental data in batch and semi-continuous operation under autotrophic conditions with 2% CO2 enrichment. The model is able to predict recombinant protein production, nitrate uptake and biomass growth, which is useful for process control and optimization. We investigated strategies to further increase MFHR1 production. While mixotrophic and heterotrophic conditions decreased the MFHR1-specific productivity compared to autotrophic conditions, addition of the phytohormone auxin (NAA, 10 µM) to the medium enhanced it by 470% in shaken flasks and up to 230% and 260%, in batch and fed-batch bioreactors, respectively. Supporting this finding, the auxin-synthesis inhibitor L-kynurenine (100 µM) decreased MFHR1 production significantly by 110% and 580% at day 7 and 18, respectively. Expression analysis revealed that the MFHR1 transgene, driven by the Physcomitrella actin5 (PpAct5) promoter, was upregulated 16 h after NAA addition and remained enhanced over the whole process, whereas the auxin-responsive gene PpIAA1A was upregulated within the first 2 hours, indicating that the effect of auxin on PpAct5 promoter-driven expression is indirect. Furthermore, the day of NAA supplementation was crucial, leading to an up to 8-fold increase of MFHR1-specific productivity (0.82 mg MFHR1/g fresh weight, 150 mg accumulated over 7 days) compared to the productivity reported previously. Our findings are likely to be applicable to other plant-based expression systems to increase biopharmaceutical production and yields.

3.
Bioresour Technol ; 346: 126597, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34990860

RESUMO

Novel cell-disruption combinations (autolytic incubation and hypotonic osmotic shock combined with HPH or pH12) were used to investigate the fundamental mass transfer of lipids and proteins from Nannochloropsis slurries (140 mg biomass/g slurry). Since neutral lipids exist as cytosolic globules, their mass transfer was directly dependent on disintegration of cell walls. Complete recovery was obtained with complete physical disruption. HPH combinations exerted more physical disruption and led to higher yields than pH12. In contrast, proteins exist as both cytosolic water-soluble fractions and cell-wall/membrane structural fractions and have a complex extraction behaviour. Mass transfer of cytosolic proteins was dependent on cell-wall disintegration, while that of structural proteins was governed by cell-wall disintegration and severance of protein linkage from the wall/membrane. HPH combinations exerted only physical disruption and were limited to releasing soluble proteins. pH12 combinations hydrolysed chemical linkages in addition to exerting physical disruption, releasing both soluble and structural proteins.


Assuntos
Microalgas , Estramenópilas , Biomassa , Lipídeos , Água
4.
Eng Life Sci ; 21(10): 607-622, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34690632

RESUMO

The present work characterizes a submerged aerated hollow fiber polyvinylidene fluorid (PVDF) membrane (0.03 µm) device (Harvester) designed for the ultrafiltration (UF) of microalgae suspensions. Commercial baker's yeast served as model suspension to investigate the influence of the aeration rate of the hollow fibers on the critical flux (CF, J c) for different cell concentrations. An optimal aeration rate of 1.25 vvm was determined. Moreover, the CF was evaluated using two different Chlorella cultures (axenic and non-axenic) of various biomass densities (0.8-17.5 g DW/L). Comparably high CFs of 15.57 and 10.08 L/m/2/h were measured for microalgae concentrations of 4.8 and 10.0 g DW/L, respectively, applying very strict CF criteria. Furthermore, the J c-values correlated (negative) linearly with the biomass concentration (0.8-10.0 g DW/L). Concentration factors between 2.8 and 12.4 and volumetric reduction factors varying from 3.5 to 11.5 could be achieved in short-term filtration, whereat a stable filtration handling biomass concentrations up to 40.0 g DW/L was feasible. Measures for fouling control (aeration of membrane fibers, periodic backflushing) have thus been proven to be successful. Estimations on energy consumption revealed very low energy demand of 17.97 kJ/m3 treated microalgae feed suspension (4.99 × 10-3 kWh/m3) and 37.83 kJ/kg treated biomass (1.05 × 10-2 kWh/kg), respectively, for an up-concentration from 2 to 40 g DW/L of a microalgae suspension.

5.
Sci Total Environ ; 779: 146373, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030249

RESUMO

A near-zero waste treatment system for food processing wastewater was developed and studied. The wastewater was treated using an anaerobic membrane bioreactor (AnMBR), polished using an outdoor photobioreactor for microalgae cultivation (three species were studied), and excess sludge was treated using hydrothermal carbonization. The study was conducted under arid climate conditions for one year (four seasons). The AnMBR reduced the total organic carbon by 97%, which was mostly recovered as methane (~57%) and hydrochar (~4%). Microalgal biomass productivity in the AnMBR effluent ranged from 0.25 to 0.8 g·L-1·day-1. Nitrogen (N) and phosphorous (P) uptake varied seasonally, from 18 to 45 mg·L-1·day-1 and up to 5 mg·L-1·day-1, respectively. N and P mass balance analysis demonstrated that the process was highly efficient in the recovery of nitrogen (~77%), and phosphorus (~91%). The performance of the microalgal culture changed among seasons because of climatic variation, as a result of variation in the wastewater chemistry, and possibly due to differences among the microalgal species. Effluent standards for irrigation use were met throughout the year and were achieved within two days in summer and 4.5 days in winter. Overall, the study demonstrated a near-zero waste discharge system capable of producing high-quality effluent, achieving nutrient and carbon recovery into microalgae biomass, and energy production as biogas and hydrochar.


Assuntos
Microalgas , Águas Residuárias , Biomassa , Carbono , Manipulação de Alimentos , Nitrogênio , Nutrientes , Água
6.
Heliyon ; 6(11): e05484, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33241152

RESUMO

Grass pea (Lathyrus sativus L.) is commonly consumed in cooked, fermented, and roasted forms in Ethiopia. However, the impacts of household processing practices on its nutrients, antinutrients, and toxic compounds have not been adequately studied. Therefore, the effects of household processing and fermentation in the presence and absence of a phytase on the contents of ß-N-oxalyl-L-α,ß-diaminopropionic acid (ß-ODAP), myo-inositol phosphates, crude protein, minerals and the in vitro bioaccessibility were investigated. Fermentation exhibited a significant decline in ß-ODAP (13.0-62.0%) and phytate (7.3-90.5%) irrespective of the presence of phytase. Pressure and pan cooking after discarding the soaking water resulted in a 27.0 and 16.2% reduction in ß-ODAP. A 30% reduction in phytate was observed during germination followed by roasting. In addition, germination resulted in a significant (p < 0.05) increase in crude protein. Germination and germination followed by roasting resulted in the highest Fe bioaccessibilities (more than 25 fold higher compared to untreated samples) followed by pressure cooking and soaking. Processing also improved Zn bioaccessibilities by 50.0% (soaked seed without soaking water), 22.5% (soaked seed with soaking water), and 4.3% (germination). Thus, the processing technologies applied were capable of reducing the content of phytate (InsP6) and ß-ODAP with a concomitant increase in mineral bioaccessibilities. Processing of grass peas could therefore contribute to their more widespread utilization.

7.
J Agric Food Chem ; 67(31): 8668-8676, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31271028

RESUMO

This study investigated the effect of Chlorella vulgaris (C. vulgaris) on genotoxicity, cytotoxicity, and apoptosis in Caco-2 and HT-29 cells. C. vulgaris significantly induced DNA damage in both cell lines at a concentration of 200 µg dry matter/mL (comet tail intensity CTI: 24.6 ± 4.7% for Caco-2, 16.6 ± 0.9% for HT-29). The application of processing (sonication, ball-milling) did not affect the genotoxicity negatively and lowered the lipid peroxidation in C. vulgaris preparations. C. vulgaris-induced intracellular formation of reactive oxygen species in human cell lines and might be responsible for the genotoxic effect. A solid fraction mainly triggered the observed DNA damage (CTI: 41.5 ± 1.9%), whereas a hydrophilic (CTI: 7.9 ± 1.7%) and lipophilic (CTI: 10.2 ± 2.1%) fraction revealed a significantly lower tail intensity. C. vulgaris significantly induced DNA damage in both cell lines possibly through intracellular formation of reactive oxygen species; however, it was repaired after a 2 h recovery time or was even avoided at lower concentrations. In addition, none of the preparations indicated an adverse effect on cell proliferation or revealed apoptotic activity.


Assuntos
Chlorella vulgaris/química , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/citologia , Mutagênicos/toxicidade , Extratos Vegetais/toxicidade , Apoptose/efeitos dos fármacos , Processos Autotróficos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/efeitos da radiação , Ensaio Cometa , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Luz , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
8.
Bioresour Technol ; 290: 121758, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349114

RESUMO

This study investigated the feasibility of using hydrothermal carbonization (HTC) aqueous phase as an alternative nutrient source for microalgae cultivation, and the microalgae cultivation capability to treat this complex medium to a level enabling its reuse or discharge. HTC of activated sludge was optimized in terms of the energy content of the solid hydrochar and the nutrient content of the HTC aqueous phase adequate for microalgal growth. Growth rates of Coelastrella sp. and Chlorella sp. in the HTC aqueous phase based growth medium and a control medium (mBG11) were similar, indicating that the HTC aqueous phase does not inhibit the microalgae growth. Nitrogen and phosphorus concentrations were reduced by >90% and dissolved organic carbon by 80% after 6 days of cultivation, resulting in water quality suitable for reuse or discharge. This study confirms the microalgae high potential in a circular bio-economy to valorize wet bio-waste streams from various treatment methods.


Assuntos
Chlorella , Microalgas , Carbono , Nutrientes , Temperatura
9.
Nutrients ; 11(4)2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959933

RESUMO

Phaeodactylum tricornutum (P. tricornutum) comprise several lipophilic constituents with proposed anti-obesity and anti-diabetic properties. We investigated the effect of an ethanolic P. tricornutum extract (PTE) on energy metabolism in obesity-prone mice fed a high fat diet (HFD). Six- to eight-week-old male C57BL/6J mice were switched to HFD and, at the same time, received orally placebo or PTE (100 mg or 300 mg/kg body weight/day). Body weight, body composition, and food intake were monitored. After 26 days, blood and tissue samples were collected for biochemical, morphological, and gene expression analyses. PTE-supplemented mice accumulated fucoxanthin metabolites in adipose tissues and attained lower body weight gain, body fat content, weight of white adipose tissue (WAT) depots, and inguinal WAT adipocyte size than controls, independent of decreased food intake. PTE supplementation was associated with lower expression of Mest (a marker of fat tissue expandability) in WAT depots, lower gene expression related to lipid uptake and turnover in visceral WAT, increased expression of genes key to fatty acid oxidation and thermogenesis (Cpt1, Ucp1) in subcutaneous WAT, and signs of thermogenic activation including enhanced UCP1 protein in interscapular brown adipose tissue. In conclusion, these data show the potential of PTE to ameliorate HFD-induced obesity in vivo.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microalgas/química , Obesidade/induzido quimicamente , Xantofilas/farmacologia , Células 3T3-L1 , Tecido Adiposo Marrom/efeitos dos fármacos , Ração Animal/análise , Animais , Glicemia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Suplementos Nutricionais , Ácidos Graxos não Esterificados/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/sangue , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Xantofilas/química
10.
Food Res Int ; 120: 73-82, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000291

RESUMO

Grass pea (Lathyrus sativus L.) seeds contain an endogenous neurotoxic non-proteinogenic amino acid, ß-N-oxalyl-l-α,ß-diaminopropionic acid (ß-ODAP), a major limiting factor-for their human consumption. Furthermore, phytate (IP6), a well-known antinutrient is present in concentration capable of hindering bioavailability of iron (Fe), zinc (Zn), calcium (Ca), phosphorus (P) and other micronutrients from the seeds. Due to the reported capability of high hydrostatic pressure (HHP) to reduce the content of certain antinutritional/toxic agents in seeds and grains, the impact of HHP on the reduction of ß-ODAP and IP6 were investigated. The contents of ß-ODAP of accessions from different regions in Ethiopia were found to be in the range of 51.94 to 806.52 mg/100 g. Accession (GF1- Alemu, AK) exhibiting the highest ß-ODAP content was selected for HHP treatment in soaked and batter forms using Central Composite Face Centered Design of experiments. The best HHP conditions in respect to ß-ODAP reduction were also applied to the accession (GP-240038) with the lowest ß-ODAP-content, a genetically improved variety (Wassie) and a variety from Germany (GR). The HHP treatment at 600 MPa for 25 min of seeds soaked for 6 h and 12 h exhibited the maximum reduction of ß-ODAP (232.11 mg/100 g) and IP6 (21.11 mg/100 g) respectively. The combined incremental effect of pressure and soaking time resulted in a more significant (p ≤ .001) reduction in both compounds than the interaction of pressure with holding time (p ≤ .05). A reduction of ß-ODAP from 36.00 to 71.22% by soaked-HHP treatment was observed. ß-ODAP reductions were always higher for soaked compared to batter grass pea seeds. IP6 contents after HHP treatment ranged from 33.65 mg/100 g to nill. It can be concluded that pressure, soaking and holding time as well as the grass pea seed accession/variety had great impact on molecular structure changes, enhancement of enzyme activity and reduction in ß-ODAP and IP6 content.


Assuntos
Diamino Aminoácidos/análise , Manipulação de Alimentos/métodos , Pressão Hidrostática , Lathyrus/química , Ácido Fítico/análise , Sementes/química , beta-Alanina/análogos & derivados , Disponibilidade Biológica , Humanos , Micronutrientes , Água , beta-Alanina/análise
11.
Food Res Int ; 118: 40-48, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30898351

RESUMO

With regard to its cost-effective cultivation and the composition of high-value nutrients, the diatom Phaeodactylum tricornutum (P. tricornutum) attracts interest for the use in human nutrition. Besides a number of important nutrients, it is rich in carotenoids. Therefore, this study aimed to investigate the potential of P. tricornutum as a carotenoid source for human nutrition. In photoautotrophically produced P. tricornutum biomass the carotenoid constitution, bioaccessibility (in vitro digestion model) and cellular uptake in differentiated Caco-2 cells (Transwell model system) was determined. Furthermore, the influence of sonication on these parameters was investigated. The results indicate that ß-carotene, zeaxanthin and fucoxanthin were the main carotenoids found in P. tricornutum. Moreover, these carotenoids showed a good bioaccessibility (ß-carotene: 25%, zeaxanthin: 27%, fucoxanthin: 57%), which is further improved by sonication for ß-carotene and fucoxanthin. In line with the good bioaccessibility, fucoxanthin was the most abundant carotenoid in Caco-2 cells followed by zeaxanthin. In contrast, ß-carotene could not be detected in the cells. The present study demonstrated that P. tricornutum represents a good source of carotenoids, particularly fucoxanthin. Thus, this diatom can contribute to the intake of bioaccessible carotenoids, even without processing. In addition, sonication might be a useful tool to improve the carotenoid bioaccessibility.


Assuntos
Carotenoides/química , Diatomáceas/química , Diatomáceas/efeitos da radiação , Sonicação , Biomassa , Células CACO-2 , Digestão , Humanos , Permeabilidade , Xantofilas , Zeaxantinas , beta Caroteno
12.
Eng Life Sci ; 19(12): 830-843, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32624976

RESUMO

Kinetics generally describes bio-(chemical) reaction rates in dependence on substrate concentrations. Kinetics for microalgae is often adapted from heterotrophs and lacks mechanistic foundation, e.g. for light harvesting. Using and understanding kinetic equations as the representation of intracellular mechanisms is essential for reasonable comparisons and simulations of growth behavior. Summarizing growth kinetics in one equation does not yield reliable models. Piecewise linear or rational functions may mimic photosynthesis irradiance response curves, but fail to represent the mechanisms. Our modeling approach for photoautotrophic growth comprises physical and kinetic modules with mechanistic foundation extracted from the literature. Splitting the light submodel into the modules for light distribution, light absorption, and photosynthetic sugar production with independent parameters allows the transfer of kinetics between different reactor designs. The consecutive anabolism depends among others on nutrient concentrations. The nutrient uptake kinetics largely impacts carbon partitioning in the reviewed stoichiometry range of cellular constituents. Consecutive metabolic steps mask each other and demand a maximum value understandable as the minimum principle of growth. These fundamental modules need to be clearly distinguished, but may be modified or extended based on process conditions and progress in research. First, discussion of kinetics helps to understand the physiological situation, for which ranges of parameter values are given. Second, kinetics should be used for photobioreactor design, but also for gassing and nutrient optimization. Numerous examples are given for both aspects. Finally, measuring kinetics more comprehensively and precisely will help in improved process development.

13.
Foods ; 7(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065167

RESUMO

Micronutrient deficiencies are a major public health problem. Beans are an important plant-based source of iron, zinc and copper, but their absorption is reduced in the presence of anti-nutrients such as phytates, polyphenols and tannins. Soaking and discarding the soaking water before cooking is unanimously recommended, but this can result in mineral loss. Data on the consequences for mineral bioaccessibility is still limited. This study aimed to evaluate iron, zinc and copper bioaccessibility in black beans cooked (regular pan, pressure cooker) with and without the soaking water. For that, three batches of black beans were investigated in triplicate, each split in nine parts (raw grains and four different household processes in duplicate) and analyzed by applying the quarter technique, resulting in a grand total of 164 samples. Minerals were quantified by ICP-MS (inductively coupled plasma mass spectrometry), myo-inositol phosphates (InsP5, InsP6) by HPLC (high-performance liquid chromatography) ion-pair chromatography, total polyphenols using Folin-Denis reagent and condensed tannins using Vanillin assay. Mineral bioaccessibility was determined by in vitro digestion and dialysis. All treatments resulted in a statistically significant reduction of total polyphenols (30%) and condensed tannins (20%). Only when discarding the soaking water a loss of iron (6%) and copper (30%) was observed, and InsP6 was slightly decreased (7%) in one treatment. The bioaccessibility of iron and zinc were low (about 0.2% iron and 35% zinc), but copper presented high bioaccessibility (about 70%). Cooking beans under pressure without discarding the soaking water resulted in the highest bioaccessibility levels among all household procedures. Discarding the soaking water before cooking did not improve the nutritional quality of the beans.

14.
Biotechnol Biofuels ; 10: 186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725266

RESUMO

BACKGROUND: The fact that microalgae perform very efficiently photosynthetic conversion of sunlight into chemical energy has moved them into the focus of regenerative fuel research. Especially, biogas generation via anaerobic digestion is economically attractive due to the comparably simple apparative process technology and the theoretical possibility of converting the entire algal biomass to biogas/methane. In the last 60 years, intensive research on biogas production from microalgae biomass has revealed the microalgae as a rather challenging substrate for anaerobic digestion due to its high cell wall recalcitrance and unfavorable protein content, which requires additional pretreatment and co-fermentation strategies for sufficient fermentation. However, sustainable fuel generation requires the avoidance of cost/energy intensive biomass pretreatments to achieve positive net-energy process balance. RESULTS: Cultivation of microalgae in replete and limited nitrogen culture media conditions has led to the formation of protein-rich and low protein biomass, respectively, with the last being especially optimal for continuous fermentation. Anaerobic digestion of nitrogen limited biomass (low-N BM) was characterized by a stable process with low levels of inhibitory substances and resulted in extraordinary high biogas, and subsequently methane productivity [750 ± 15 and 462 ± 9 mLN g-1 volatile solids (VS) day-1, respectively], thus corresponding to biomass-to-methane energy conversion efficiency of up to 84%. The microbial community structure within this highly efficient digester revealed a clear predominance of the phyla Bacteroidetes and the family Methanosaetaceae among the Bacteria and Archaea, respectively. The fermentation of replete nitrogen biomass (replete-N BM), on the contrary, was demonstrated to be less productive (131 ± 33 mLN CH4 g-1VS day-1) and failed completely due to acidosis, caused through high ammonia/ammonium concentrations. The organization of the microbial community of the failed (replete-N) digester differed greatly compared to the stable low-N digester, presenting a clear shift to the phyla Firmicutes and Thermotogae, and the archaeal population shifted from acetoclastic to hydrogenotrophic methanogenesis. CONCLUSIONS: The present study underlines the importance of cultivation conditions and shows the practicability of microalgae biomass usage as mono-substrate for highly efficient continuous fermentation to methane without any pretreatment with almost maximum practically achievable energy conversion efficiency (biomass to methane).Graphical abstractGrowth condition dependence of anaerobic conversion efficiency of microalgae biomass to methane.

15.
Eng Life Sci ; 17(6): 605-612, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28701909

RESUMO

Synthetic calcite (CaCO3) particles are found in a broad range of applications. The geometry of particles produced from limestone or precipitation are versatile but limited to basic shapes. The microalga Emiliania huxleyi produces micro-structured calcite platelets, called coccoliths. This article presents the results of an application-orientated study, which includes characteristic values also used in the calcite industry for particle evaluation. It is demonstrated that coccoliths are significantly different from all industrial particles produced so far. Coccoliths are porous particles, mainly consisted of calcium carbonate, with further elements such as Mg, Si, Sr, and Fe often embedded in their structure. Their structure is extremely sophisticated, while the overall particle morphology and particle size distribution are homogeneous. This study gives a first inside into the potential of these exceptional objects and may set further impulses for their utilization in specific calcite particle applications.

16.
J Environ Manage ; 191: 252-257, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28113067

RESUMO

The H2S may play a key role in the sulfur cycle among the biogas production by the anaerobic digestion of wastes and the biogas upgrading by a microalgae based technology. The biogas is upgraded by contacting with slightly alkaline aqueous microalgae culture, then CO2 and H2S are absorbed. The dissolved H2S could limit or inhibit the microalgae growth. This paper evaluated the role of dissolved H2S and other sulfured byproducts under prevailing biogas upgrading conditions using a microalgal technology. At initial stages of batch cultivation the growth of Chlorella sp. was presumably inhibited by dissolved H2S. After 2 days, the sulfides were oxidized mainly by oxic chemical reactions to sulfate, which was later rapidly assimilated by Chlorella sp., allowing high growing rates. The fate of H2S during the microalgae cultivation at pH > 8.5 was assessed by a mathematical model where the pentasulfide, thiosulfate and sulfite were firstly produced and converted finally to sulfate for posterior assimilation.


Assuntos
Biocombustíveis , Chlorella , Dióxido de Carbono , Microalgas , Enxofre
17.
Eng Life Sci ; 17(5): 552-560, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32624800

RESUMO

Cellular perception of pressure is a largely unknown field in microalgae research although it should be addressed for optimization of a photobioreactor design regarding typically occurring pressure cycles. Also for the purpose of using microalgae as basic modules for material cycles in controlled ecological life support systems, the absence of pressure in outer space or the low absolute pressures on other planets is an abiotic factor that needs to be considered for design of integrated microalgae-based modules. The aim of this work is to study the effects of lowered pressure and pressure changes on photosynthesis as well as morphology. Two Chlamydomonas reinhardtii wild-type strains were exposed to controlled pressure patterns during batch cultivations. Sudden pressure changes should test for existing threshold values for cell survival to mimic such events during space missions. Algae were grown inside a 2 L photobioreactor with an integrated vacuum pump ensuring constant pressures down to 700 mbar. Cultivation samples were analyzed for OD750, cell dry weight, and morphology via light microscope. Chlamydomonas reinhardtii CC-1690 cells showed decreased growth rates, higher carbon dioxide uptake rates, and unchanged oxygen production rates at lower pressures. For sudden pressures changes in the range of 300 mbar no fatal threshold was determined. This study shows that pressure reduction affects growth, gas exchange rates, and morphology. Within the tested pressure range no fatal threshold value was reached.

18.
Eng Life Sci ; 17(9): 970-975, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32624846

RESUMO

Hyaluronic acid (HA) dispersion obtained from the bacteria Streptococcus equi was concentrated by electrofiltration. In the conventional downstream processing of HA, extraction and precipitation lead to increase in environmental issues, structural changes, and time and energy related costs. Using electrofiltration as an alternative technology delivers solutions to these limitations. Experiments were conducted in order to test the applicability of electrofiltration to downstream processing of the negatively charged HA. The structural changes and molecular weight distributions, often a consequence of the employed separation method, were tested by analysis of the initial dispersions and final products. In comparison to the conventional filtration, concentration factors were increased up to almost four times without any detectable structural change in the final product.

19.
Biotechnol J ; 11(8): 1060-71, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27168092

RESUMO

Illumination with red and blue photons is known to be efficient for cultivation of higher plants. For microalgae cultivation, illumination with specific wavelengths rather than full spectrum illumination can be an alternative where there is a lack of knowledge about achievable biomass yields. This study deals with the usage of color LED illumination to cultivate microalgae integrated into closed life support systems for outer space. The goal is to quantify biomass yields using color illumination (red, blue, green and mixtures) compared to white light. Chlamydomonas reinhardtii was cultivated in plate reactors with color compared to white illumination regarding PCE, specific pigment concentration and cell size. Highest PCE values were achieved under low PFDs with a red/blue illumination (680 nm/447 nm) at a 90 to 10% molar ratio. At higher PFDs saturation effects can be observed resulting from light absorption characteristics and the linear part of PI curve. Cell size and aggregation are also influenced by the applied light color. Red/blue color illumination is a promising option applicable for microalgae-based modules of life support systems under low to saturating light intensities and double-sided illumination. Results of higher PCE with addition of blue photons to red light indicate an influence of sensory pigments.


Assuntos
Biotecnologia/instrumentação , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Biomassa , Biotecnologia/métodos , Chlamydomonas reinhardtii/efeitos da radiação , Meio Ambiente Extraterreno , Luz , Microalgas/efeitos da radiação , Fotobiorreatores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...