Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Commun ; 14(1): 8316, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097578

RESUMO

Accumulation of lipid-laden macrophages within the arterial neointima is a critical step in atherosclerotic plaque formation. Here, we show that reduced levels of the cellular plasticity factor ZEB1 in macrophages increase atherosclerotic plaque formation and the chance of cardiovascular events. Compared to control counterparts (Zeb1WT/ApoeKO), male mice with Zeb1 ablation in their myeloid cells (Zeb1∆M/ApoeKO) have larger atherosclerotic plaques and higher lipid accumulation in their macrophages due to delayed lipid traffic and deficient cholesterol efflux. Zeb1∆M/ApoeKO mice display more pronounced systemic metabolic alterations than Zeb1WT/ApoeKO mice, with higher serum levels of low-density lipoproteins and inflammatory cytokines and larger ectopic fat deposits. Higher lipid accumulation in Zeb1∆M macrophages is reverted by the exogenous expression of Zeb1 through macrophage-targeted nanoparticles. In vivo administration of these nanoparticles reduces atherosclerotic plaque formation in Zeb1∆M/ApoeKO mice. Finally, low ZEB1 expression in human endarterectomies is associated with plaque rupture and cardiovascular events. These results set ZEB1 in macrophages as a potential target in the treatment of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Regulação para Baixo , Lipoproteínas LDL/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(46): e2301120120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37948583

RESUMO

Reactive oxygen species (ROS) serve important homeostatic functions but must be constantly neutralized by an adaptive antioxidant response to prevent supraphysiological levels of ROS from causing oxidative damage to cellular components. Here, we report that the cellular plasticity transcription factors ZEB1 and ZEB2 modulate in opposing directions the adaptive antioxidant response to fasting in skeletal muscle. Using transgenic mice in which Zeb1 or Zeb2 were specifically deleted in skeletal myofibers, we show that in fasted mice, the deletion of Zeb1, but not Zeb2, increased ROS production and that the adaptive antioxidant response to fasting essentially requires ZEB1 and is inhibited by ZEB2. ZEB1 expression increased in fasted muscles and protected them from atrophy; conversely, ZEB2 expression in muscles decreased during fasting and exacerbated muscle atrophy. In fasted muscles, ZEB1 reduces mitochondrial damage and increases mitochondrial respiratory activity; meanwhile, ZEB2 did the opposite. Treatment of fasting mice with Zeb1-deficient myofibers with the antioxidant triterpenoid 1[2-cyano-3,12-dioxool-eana-1,9(11)-dien-28-oyl] trifluoro-ethylamide (CDDO-TFEA) completely reversed their altered phenotype to that observed in fasted control mice. These results set ZEB factors as potential therapeutic targets to modulate the adaptive antioxidant response in physiopathological conditions and diseases caused by redox imbalance.


Assuntos
Antioxidantes , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Camundongos , Antioxidantes/farmacologia , Jejum , Camundongos Transgênicos , Atrofia Muscular/genética , Espécies Reativas de Oxigênio , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
3.
Nat Commun ; 14(1): 7471, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978290

RESUMO

Acute inflammation can either resolve through immunosuppression or persist, leading to chronic inflammation. These transitions are driven by distinct molecular and metabolic reprogramming of immune cells. The anti-diabetic drug Metformin inhibits acute and chronic inflammation through mechanisms still not fully understood. Here, we report that the anti-inflammatory and reactive-oxygen-species-inhibiting effects of Metformin depend on the expression of the plasticity factor ZEB1 in macrophages. Using mice lacking Zeb1 in their myeloid cells and human patient samples, we show that ZEB1 plays a dual role, being essential in both initiating and resolving inflammation by inducing macrophages to transition into an immunosuppressed state. ZEB1 mediates these diverging effects in inflammation and immunosuppression by modulating mitochondrial content through activation of autophagy and inhibition of mitochondrial protein translation. During the transition from inflammation to immunosuppression, Metformin mimics the metabolic reprogramming of myeloid cells induced by ZEB1. Mechanistically, in immunosuppression, ZEB1 inhibits amino acid uptake, leading to downregulation of mTORC1 signalling and a decrease in mitochondrial translation in macrophages. These results identify ZEB1 as a driver of myeloid cell metabolic plasticity, suggesting that targeting its expression and function could serve as a strategy to modulate dysregulated inflammation and immunosuppression.


Assuntos
Macrófagos , Metformina , Humanos , Animais , Camundongos , Macrófagos/metabolismo , Células Mieloides , Inflamação/metabolismo , Metformina/farmacologia , Terapia de Imunossupressão
4.
Cell Rep ; 42(10): 113222, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37819755

RESUMO

Human embryonic stem cells (hESCs) can differentiate into any cell lineage. Here, we report that ZEB1 and ZEB2 promote and inhibit mesodermal-to-myogenic specification of hESCs, respectively. Knockdown and/or overexpression experiments of ZEB1, ZEB2, or PAX7 in hESCs indicate that ZEB1 is required for hESC Nodal/Activin-mediated mesodermal specification and PAX7+ human myogenic progenitor (hMuP) generation, while ZEB2 inhibits these processes. ZEB1 downregulation induces neural markers, while ZEB2 downregulation induces mesodermal/myogenic markers. Mechanistically, ZEB1 binds to and transcriptionally activates the PAX7 promoter, while ZEB2 binds to and activates the promoter of the neural OTX2 marker. Transplanting ZEB1 or ZEB2 knocked down hMuPs into the muscles of a muscular dystrophy mouse model, showing that hMuP engraftment and generation of dystrophin-positive myofibers depend on ZEB1 and are inhibited by ZEB2. The mouse model results suggest that ZEB1 expression and/or downregulating ZEB2 in hESCs may also enhance hESC regenerative capacity for human muscular dystrophy therapy.


Assuntos
Células-Tronco Embrionárias Humanas , Distrofias Musculares , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Humanos , Camundongos , Ativinas/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula , Células-Tronco Embrionárias Humanas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
5.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870961

RESUMO

Despite being in the same pathway, mutations of KRAS and BRAF in colorectal carcinomas (CRCs) determine distinct progression courses. ZEB1 induces an epithelial-to-mesenchymal transition (EMT) and is associated with worse progression in most carcinomas. Using samples from patients with CRC, mouse models of KrasG12D and BrafV600E CRC, and a Zeb1-deficient mouse, we show that ZEB1 had opposite functions in KRAS- and BRAF-mutant CRCs. In KrasG12D CRCs, ZEB1 was correlated with a worse prognosis and a higher number of larger and undifferentiated (mesenchymal or EMT-like) tumors. Surprisingly, in BrafV600E CRC, ZEB1 was associated with better prognosis; fewer, smaller, and more differentiated (reduced EMT) primary tumors; and fewer metastases. ZEB1 was positively correlated in KRAS-mutant CRC cells and negatively in BRAF-mutant CRC cells with gene signatures for EMT, cell proliferation and survival, and ERK signaling. On a mechanistic level, ZEB1 knockdown in KRAS-mutant CRC cells increased apoptosis and reduced clonogenicity and anchorage-independent growth; the reverse occurred in BRAFV600E CRC cells. ZEB1 is associated with better prognosis and reduced EMT signature in patients harboring BRAF CRCs. These data suggest that ZEB1 can function as a tumor suppressor in BRAF-mutant CRCs, highlighting the importance of considering the KRAS/BRAF mutational background of CRCs in therapeutic strategies targeting ZEB1/EMT.


Assuntos
Carcinoma , Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Humanos , Camundongos , Neoplasias Colorretais/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
7.
Nature ; 612(7939): 223-227, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477128

RESUMO

Gamma-ray bursts (GRBs) are divided into two populations1,2; long GRBs that derive from the core collapse of massive stars (for example, ref. 3) and short GRBs that form in the merger of two compact objects4,5. Although it is common to divide the two populations at a gamma-ray duration of 2 s, classification based on duration does not always map to the progenitor. Notably, GRBs with short (≲2 s) spikes of prompt gamma-ray emission followed by prolonged, spectrally softer extended emission (EE-SGRBs) have been suggested to arise from compact object mergers6-8. Compact object mergers are of great astrophysical importance as the only confirmed site of rapid neutron capture (r-process) nucleosynthesis, observed in the form of so-called kilonovae9-14. Here we report the discovery of a possible kilonova associated with the nearby (350 Mpc), minute-duration GRB 211211A. The kilonova implies that the progenitor is a compact object merger, suggesting that GRBs with long, complex light curves can be spawned from merger events. The kilonova of GRB 211211A has a similar luminosity, duration and colour to that which accompanied the gravitational wave (GW)-detected binary neutron star (BNS) merger GW170817 (ref. 4). Further searches for GW signals coincident with long GRBs are a promising route for future multi-messenger astronomy.


Assuntos
Nanismo , Osteocondrodisplasias , Astros Celestes , Humanos , Astronomia , Gravitação
8.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497403

RESUMO

Next-generation sequencing (NGS) provides a molecular rationale to inform prognostic stratification and to guide personalized treatment in cancer patients. Here, we determined the prognostic and predictive value of actionable mutated genes in metastatic colorectal cancer (mCRC). Among a total of 294 mCRC tumors examined by targeted NGS, 200 of them derived from patients treated with first-line chemotherapy plus/minus monoclonal antibodies were included in prognostic analyses. Discriminative performance was assessed by time-dependent estimates of the area under the curve (AUC). The most recurrently mutated genes were TP53 (64%), KRAS or NRAS (49%), PIK3CA (15%), SMAD4 (14%), BRAF (13%), and FBXW7 (9.5%). Mutations in FBXW7 correlated with worse OS rates (p = 0.036; HR, 2.24) independently of clinical factors. Concurrent mutations in TP53 and FBXW7 were associated with increased risk of death (p = 0.02; HR, 3.31) as well as double-mutated TP53 and SMAD4 (p = 0.03; HR, 2.91). Analysis of the MSK-IMPACT mCRC cohort (N = 1095 patients) confirmed the same prognostic trend for the previously identified mutated genes. Addition of the mutational status of these genes upon clinical factors resulted in a time-dependent AUC of 87%. Gene set enrichment analysis revealed specific molecular pathways associated with SMAD4 and FBXW7 mutations in TP53-defficient tumors. Conclusively, SMAD4 and FBXW7 mutations in TP53-altered tumors were predictive of a negative prognostic outcome in mCRC patients treated with first-line regimens.

9.
Nature ; 612(7940): 430-434, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450988

RESUMO

Tidal disruption events (TDEs) are bursts of electromagnetic energy that are released when supermassive black holes at the centres of galaxies violently disrupt a star that passes too close1. TDEs provide a window through which to study accretion onto supermassive black holes; in some rare cases, this accretion leads to launching of a relativistic jet2-9, but the necessary conditions are not fully understood. The best-studied jetted TDE so far is Swift J1644+57, which was discovered in γ-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical detection of AT2022cmc, a rapidly fading source at cosmological distance (redshift z = 1.19325) the unique light curve of which transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-ray, submillimetre and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron 'afterglow', probably launched by a supermassive black hole with spin greater than approximately 0.3. Using four years of Zwicky Transient Facility10 survey data, we calculate a rate of [Formula: see text] per gigapascals cubed per year for on-axis jetted TDEs on the basis of the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations11. Correcting for the beaming angle effects, this rate confirms that approximately 1 per cent of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs.

10.
Cell Rep ; 41(1): 111452, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198275

RESUMO

Epithelial-mesenchymal transition (EMT) facilitates cancer invasion and is initiated by mesenchyme-driving transcription factors and actin cytoskeletal assembly. We show a cytoplasmic-to-nuclear transport gradient of the EMT transcription factor Zeb1 toward sites of invasion in lung adenocarcinoma (LUAD), driven by the EMT inducer Tgfb, which is expressed in M2 polarized macrophages. We show that Zeb1 binds free actin monomers and RhoA in the cytoplasm to inhibit actin polymerization, blocking cell migration and Yap1 nuclear transport. Tgfb causes turnover of the scaffold protein Rassf1a, which targets RhoA. Release of this RhoA inhibition in response to Tgfb overcomes Zeb1's block of cytoskeleton assembly and frees it for nuclear transport. A ZEB1 nuclear transport signature highlights EMT progression, identifies dedifferentiated invasive/metastatic human LUADs, and predicts survival. Blocking Zeb1 nuclear transport with a small molecule identified in this study inhibits cytoskeleton assembly, cell migration, Yap1 nuclear transport, EMT, and precancerous-to-malignant transition.


Assuntos
Neoplasias Pulmonares , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Actinas/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
11.
Front Immunol ; 13: 926304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119118

RESUMO

Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/ß-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches.


Assuntos
Glutamina , Neoplasias , Carbono , Glucose , Hexosaminas , Humanos , Hipoglicemiantes , Lactatos , Lipídeos , Microambiente Tumoral/genética
12.
Sci Adv ; 7(21)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020945

RESUMO

The PDL1-PD1 immune checkpoint inhibits T cell activation, and its blockade is effective in a subset of patients. Studies are investigating how checkpoints are hijacked by cancer cells and why most patients remain resistant to immunotherapy. Epithelial mesenchymal transition (EMT), which drives tumor cell invasion via the Zeb1 transcription factor, is linked to immunotherapy resistance. In addition, M2-polarized tumor-associated macrophages (TAMs), which inhibit T cell migration and activation, may also cause immunotherapy resistance. How EMT in invading cancer cells is linked to therapy resistance and events driving TAM M2 polarization are therefore important questions. We show that Zeb1 links these two resistance pathways because it is required for PDL1 expression on invading lung cancer cells, and it also induces CD47 on these invading cells, which drives M2 polarization of adjacent TAMs. Resulting reprogramming of the microenvironment around invading cells shields them from the hostile inflammatory environment surrounding tumors.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas de Checkpoint Imunológico , Neoplasias Pulmonares , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Linhagem Celular Tumoral , Movimento Celular , Humanos , Imunoterapia/métodos , Microambiente Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
13.
Gut ; 68(12): 2129-2141, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31366457

RESUMO

OBJECTIVE: Chronic inflammation is a risk factor in colorectal cancer (CRC) and reactive oxygen species (ROS) released by the inflamed stroma elicit DNA damage in epithelial cells. We sought to identify new drivers of ulcerative colitis (UC) and inflammatory CRC. DESIGN: The study uses samples from patients with UC, mouse models of colitis and CRC and mice deficient for the epithelial-to-mesenchymal transition factor ZEB1 and the DNA repair glycosylase N-methyl-purine glycosylase (MPG). Samples were analysed by immunostaining, qRT-PCR, chromatin immunoprecipitation assays, microbiota next-generation sequencing and ROS determination. RESULTS: ZEB1 was induced in the colonic epithelium of UC and of mouse models of colitis. Compared with wild-type counterparts, Zeb1-deficient mice were partially protected from experimental colitis and, in a model of inflammatory CRC, they developed fewer tumours and exhibited lower levels of DNA damage (8-oxo-dG) and higher expression of MPG. Knockdown of ZEB1 in CRC cells inhibited 8-oxo-dG induction by oxidative stress (H2O2) and inflammatory cytokines (interleukin (IL)1ß). ZEB1 bound directly to the MPG promoter whose expression inhibited. This molecular mechanism was validated at the genetic level and the crossing of Zeb1-deficient and Mpg-deficient mice reverted the reduced inflammation and tumourigenesis in the former. ZEB1 expression in CRC cells induced ROS and IL1ß production by macrophages that, in turn, lowered MPG in CRC cells thus amplifying a positive loop between both cells to promote DNA damage and inhibit DNA repair. CONCLUSIONS: ZEB1 promotes colitis and inflammatory CRC through the inhibition of MPG in epithelial cells, thus offering new therapeutic strategies to modulate inflammation and inflammatory cancer.


Assuntos
Colite Ulcerativa/genética , Neoplasias do Colo/genética , DNA Glicosilases/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Experimentais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Biópsia , Células Cultivadas , Colite Ulcerativa/complicações , Colite Ulcerativa/metabolismo , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , DNA Glicosilases/metabolismo , Reparo do DNA , Células Epiteliais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Neoplásico/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Dedos de Zinco
14.
Mol Ther Oncolytics ; 14: 246-252, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31428674

RESUMO

Vaccinia virus (VACV) possesses a great safety record as a smallpox vaccine and has been intensively used as an oncolytic virus against various types of cancer over the past decade. Different strategies were developed to make VACV safe and selective to cancer cells. Leading clinical candidates, such as Pexa-Vec, are attenuated through deletion of the viral thymidine kinase (TK) gene, which limits virus growth to replicate in cancer tissue. However, tumors are not the only tissues whose metabolic activity can overcome the lack of viral TK. In this study, we sought to further increase the tumor-specific replication and oncolytic potential of Copenhagen strain VACV ΔTK. We show that deletion of the anti-apoptosis viral gene F1L not only increases the safety of the Copenhagen ΔTK virus but also improves its oncolytic activity in an aggressive glioblastoma model. The additional loss of F1L does not affect VACV replication capacity, yet its ability to induce cancer cell death is significantly increased. Our results also indicate that cell death induced by the Copenhagen ΔTK/F1L mutant releases more immunogenic signals, as indicated by increased levels of IL-1ß production. A cytotoxicity screen in an NCI-60 panel shows that the ΔTK/F1L virus induces faster tumor cell death in different cancer types. Most importantly, we show that, compared to the TK-deleted virus, the ΔTK/F1L virus is attenuated in human normal cells and causes fewer pox lesions in murine models. Collectively, our findings describe a new oncolytic vaccinia deletion strain that improves safety and increases tumor cell killing.

15.
Nat Commun ; 10(1): 1364, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30910999

RESUMO

The mechanisms linking muscle injury and regeneration are not fully understood. Here we report an unexpected role for ZEB1 regulating inflammatory and repair responses in dystrophic and acutely injured muscles. ZEB1 is upregulated in the undamaged and regenerating myofibers of injured muscles. Compared to wild-type counterparts, Zeb1-deficient injured muscles exhibit enhanced damage that corresponds with a retarded p38-MAPK-dependent transition of their macrophages towards an anti-inflammatory phenotype. Zeb1-deficient injured muscles also display a delayed and poorer regeneration that is accounted by the retarded anti-inflammatory macrophage transition and their intrinsically deficient muscle satellite cells (MuSCs). Macrophages in Zeb1-deficient injured muscles show lower phosphorylation of p38 and its forced activation reverts the enhanced muscle damage and poorer regeneration. MuSCs require ZEB1 to maintain their quiescence, prevent their premature activation following injury, and drive efficient regeneration in dystrophic muscles. These data indicate that ZEB1 protects muscle from damage and is required for its regeneration.


Assuntos
Músculo Esquelético/metabolismo , Distrofias Musculares/genética , RNA Mensageiro/genética , Regeneração/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Cromonas/farmacologia , Modelos Animais de Doenças , Flavonoides/farmacologia , Regulação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/imunologia , Laminina/genética , Laminina/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Morfolinas/farmacologia , Músculo Esquelético/imunologia , Músculo Esquelético/lesões , Distrofias Musculares/imunologia , Distrofias Musculares/patologia , Fenótipo , Fosforilação , RNA Mensageiro/imunologia , Regeneração/imunologia , Células Satélites de Músculo Esquelético/imunologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/deficiência , Homeobox 1 de Ligação a E-box em Dedo de Zinco/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
16.
Nucleic Acids Res ; 46(20): 10697-10708, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30304480

RESUMO

Multiple physiopathological and clinical conditions trigger skeletal muscle atrophy through the induction of a group of proteins (atrogenes) that includes components of the ubiquitin-proteasome and autophagy-lysosomal systems. Atrogenes are induced by FOXO transcription factors, but their regulation is still not fully understood. Here, we showed that the transcription factor ZEB1, best known for promoting tumor progression, inhibits muscle atrophy and atrogene expression by antagonizing FOXO3-mediated induction of atrogenes. Compared to wild-type counterparts, hindlimb immobilization in Zeb1-deficient mice resulted in enhanced muscle atrophy and higher expression of a number of atrogenes, including Atrogin-1/Fbxo32, MuRF1/Trim63, Ctsl, 4ebp1, Gabarapl1, Psma1 and Nrf2. Likewise, in the C2C12 myogenic cell model, ZEB1 knockdown augmented both myotube diameter reduction and atrogene upregulation in response to nutrient deprivation. Mechanistically, ZEB1 directly represses in vitro and in vivo Fbxo32 and Trim63 promoter transcription in a stage-dependent manner and in a reverse pattern with MYOD1. ZEB1 bound to the Fbxo32 promoter in undifferentiated myoblasts and atrophic myotubes, but not in non-atrophic myotubes, where it is displaced by MYOD1. ZEB1 repressed both promoters through CtBP-mediated inhibition of FOXO3 transcriptional activity. These results set ZEB1 as a new target in therapeutic approaches to clinical conditions causing muscle mass loss.


Assuntos
Oxirredutases do Álcool/genética , Proteínas de Ligação a DNA/genética , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica , Atrofia Muscular/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Oxirredutases do Álcool/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteína Forkhead Box O3/metabolismo , Células HEK293 , Homeostase , Humanos , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Mioblastos/metabolismo , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Proteínas Ligases SKP Culina F-Box/metabolismo , Transcrição Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
17.
Cell Cycle ; 17(18): 2221-2229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30290712

RESUMO

Cancer stem cells (CSC) are thought to be an important source of cancer cells in tumors of different origins. Mounting evidence suggests they are generated reversibly from existing cancer cells, and supply new cancer cells during tumor progression and following therapy. Elegant lineage mapping stud(ies are identifying progenitors, and in some cases differentiated cells, as targets of transformation in a variety of tumors. Recent evidence suggests resulting tumor initiating cells (TIC) might be distinct from CSC. Molecular pathways leading from cells of tumor origin to precancerous lesions and cancer cells are only beginning to be unraveled. We review a pathway where asymmetric division of precancerous cells generates TIC in a K-Ras-initiated model of lung cancer. And, we compare unexpected steps in this asymmetric division to those evident in well-studied stem cell models.


Assuntos
Cromátides/metabolismo , Epigenômica , Divisão Celular , Citocinese , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proteínas ras/metabolismo
18.
Nat Commun ; 9(1): 2424, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930325

RESUMO

A model of K-Ras-initiated lung cancer was used to follow the transition of precancerous adenoma to adenocarcinoma. In hypoxic, Tgf-ß1-rich interiors of adenomas, we show that adenoma cells divide asymmetrically to produce cancer-generating cells highlighted by epithelial mesenchymal transition and a CD44/Zeb1 loop. In these cells, Zeb1 represses the Smad inhibitor Zeb2/Sip1, causing Pten loss and launching Tgf-ß1 signaling that drives nuclear translocation of Yap1. Surprisingly, the nuclear polarization of transcription factors during mitosis establishes parent and daughter fates prior to cytokinesis in sequential asymmetric divisions that generate cancer cells from precancerous lesions. Mutation or knockdown of Zeb1 in the lung blocked the production of CD44hi, Zeb1hi cancer-generating cells from adenoma cells. A CD44/Zeb1 loop then initiates two-step transition of precancerous cells to cancer cells via a stable intermediate population of cancer-generating cells. We show these initial cancer-generating cells are independent of cancer stem cells generated in tumors by p53-regulated reprogramming of existing cancer cells.


Assuntos
Adenocarcinoma/patologia , Adenoma/patologia , Divisão Celular Assimétrica , Neoplasias Pulmonares/patologia , Fatores de Transcrição/análise , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/metabolismo , Adenoma/metabolismo , Animais , Proteínas de Ciclo Celular , Polaridade Celular , Transição Epitelial-Mesenquimal , Técnicas de Silenciamento de Genes , Genes ras , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Sinalização YAP , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
19.
EMBO J ; 36(22): 3336-3355, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29038174

RESUMO

Accumulation of tumor-associated macrophages (TAMs) associates with malignant progression in cancer. However, the mechanisms that drive the pro-tumor functions of TAMs are not fully understood. ZEB1 is best known for driving an epithelial-to-mesenchymal transition (EMT) in cancer cells to promote tumor progression. However, a role for ZEB1 in macrophages and TAMs has not been studied. Here we describe that TAMs require ZEB1 for their tumor-promoting and chemotherapy resistance functions in a mouse model of ovarian cancer. Only TAMs that expressed full levels of Zeb1 accelerated tumor growth. Mechanistically, ZEB1 expression in TAMs induced their polarization toward an F4/80low pro-tumor phenotype, including direct activation of Ccr2 In turn, expression of ZEB1 by TAMs induced Ccl2, Cd74, and a mesenchymal/stem-like phenotype in cancer cells. In human ovarian carcinomas, TAM infiltration and CCR2 expression correlated with ZEB1 in tumor cells, where along with CCL2 and CD74 determined poorer prognosis. Importantly, ZEB1 in TAMs was a factor of poorer survival in human ovarian carcinomas. These data establish ZEB1 as a key factor in the tumor microenvironment and for maintaining TAMs' tumor-promoting functions.


Assuntos
Carcinogênese/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Quimiocina CCL2/farmacologia , Fatores Estimuladores de Colônias/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/patologia , Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fenótipo , Receptores CCR2/metabolismo , Análise de Sobrevida , Regulação para Cima/efeitos dos fármacos
20.
Cell Rep ; 19(5): 1022-1032, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467896

RESUMO

In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.


Assuntos
Genoma Viral , Interações Hospedeiro-Patógeno , Vaccinia virus/fisiologia , Replicação Viral , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem/metabolismo , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/metabolismo , Vaccinia virus/genética , Vaccinia virus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...