Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33783357

RESUMO

Methionine restriction (MR) dramatically extends the healthspan of several organisms. Methionine-restricted rodents have less age-related pathology and increased longevity as compared with controls, and recent studies suggest that humans might benefit similarly. Mechanistically, it is likely that the decreased IGF-1 signaling that results from MR underlies the benefits of this regimen. Thus, we hypothesized that interventions that decrease IGF-1 signaling would also produce MR-like healthspan benefits. Selenium supplementation inhibits IGF-1 signaling in rats and has been studied for its putative healthspan benefits. Indeed, we show that feeding mice a diet supplemented with sodium selenite results in an MR-like phenotype, marked by protection against diet-induced obesity, as well as altered plasma levels of IGF-1, FGF-21, adiponectin, and leptin. Selenomethionine supplementation results in a similar, albeit less robust response, and also extends budding yeast lifespan. Our results indicate that selenium supplementation is sufficient to produce MR-like healthspan benefits for yeast and mammals.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Metionina/administração & dosagem , Camundongos/fisiologia , Selênio/metabolismo , Selenometionina/metabolismo , Selenito de Sódio/metabolismo , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Feminino , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Selênio/administração & dosagem , Selenometionina/administração & dosagem , Selenito de Sódio/administração & dosagem
2.
Curr Genet ; 65(3): 717-720, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30673825

RESUMO

The number of times a cell divides before irreversibly arresting is termed replicative lifespan. Despite discovery of many chemical, dietary and genetic interventions that extend replicative lifespan, usually first discovered in budding yeast and subsequently shown to apply to metazoans, there is still little understanding of the underlying molecular mechanisms involved. One unifying theme is that most, if not all, interventions that extend replicative lifespan induce "hormesis", where a little inflicted damage makes cells more able to resist similar challenges in the future. One of the many cellular changes that occur during hormesis is a global reduction in protein synthesis, which has been linked to enhanced longevity in many organisms. Our recent study in budding yeast found that it was not the reduction in protein synthesis per se, but rather the subsequent induction of the conserved Gcn4 transcriptional regulator and its ability to induce autophagy that was responsible for extending replicative lifespan. We propose that Gcn4-dependent induction of autophagy occurring downstream of reduced global protein synthesis may be a unifying molecular mechanism for many interventions that extend replicative lifespan.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação Fúngica da Expressão Gênica , Hormese , Longevidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Elife ; 72018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30117416

RESUMO

Translational efficiency correlates with longevity, yet its role in lifespan determination remains unclear. Using ribosome profiling, translation efficiency is globally reduced during replicative aging in budding yeast by at least two mechanisms: Firstly, Ssd1 is induced during aging, sequestering mRNAs to P-bodies. Furthermore, Ssd1 overexpression in young cells reduced translation and extended lifespan, while loss of Ssd1 reduced the translational deficit of old cells and shortened lifespan. Secondly, phosphorylation of eIF2α, mediated by the stress kinase Gcn2, was elevated in old cells, contributing to the global reduction in translation without detectable induction of the downstream Gcn4 transcriptional activator. tRNA overexpression activated Gcn2 in young cells and extended lifespan in a manner dependent on Gcn4. Moreover, overexpression of Gcn4 sufficed to extend lifespan in an autophagy-dependent manner in the absence of changes in global translation, indicating that Gcn4-mediated autophagy induction is the ultimate downstream target of activated Gcn2, to extend lifespan.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Longevidade/genética , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Fator de Iniciação 2 em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Fosforilação , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
4.
Sci Adv ; 4(2): eaaq0236, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29441364

RESUMO

The causal relationship between genomic instability and replicative aging is unclear. We reveal here that genomic instability at the budding yeast ribosomal DNA (rDNA) locus increases during aging, potentially due to the reduced cohesion that we uncovered during aging caused by the reduced abundance of multiple cohesin subunits, promoting increased global chromosomal instability. In agreement, cohesion is lost during aging at other chromosomal locations in addition to the rDNA, including centromeres. The genomic instability in old cells is exacerbated by a defect in DNA double-strand break (DSB) repair that we uncovered in old yeast. This was due to limiting levels of key homologous recombination proteins because overexpression of Rad51 or Mre11 reduced the accumulation of DSBs and largely restored DSB repair in old cells. We propose that increased rDNA instability and the reduced DSB repair capacity of old cells contribute to the progressive accumulation of global chromosomal DNA breaks, where exceeding a threshold of genomic DNA damage ends the replicative life span.


Assuntos
Replicação do DNA/genética , Recombinação Homóloga/genética , Saccharomycetales/genética , Saccharomycetales/fisiologia , Cromossomos Fúngicos/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Ribossômico/genética , Loci Gênicos , Genoma Fúngico , Instabilidade Genômica , RNA não Traduzido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citologia , Transcrição Gênica
5.
Microb Cell ; 4(11): 368-375, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29167799

RESUMO

Aging is a complex, multi-factorial biological process shared by all living organisms. It is manifested by a gradual accumulation of molecular alterations that lead to the decline of normal physiological functions in a time-dependent fashion. The ultimate goal of aging research is to develop therapeutic means to extend human lifespan, while reducing susceptibility to many age-related diseases including cancer, as well as metabolic, cardiovascular and neurodegenerative disorders. However, this first requires elucidation of the causes of aging, which has been greatly facilitated by the use of model organisms. In particular, the budding yeast Saccharomyces cerevisiae has been invaluable in the identification of conserved molecular and cellular determinants of aging and for the development of approaches to manipulate these aging determinants to extend lifespan. Strikingly, where examined, virtually all means to experimentally extend lifespan result in the induction of cellular stress responses. This review describes growing evidence in yeast that activation of the integrated stress response contributes significantly to lifespan extension. These findings demonstrate that yeast remains a powerful model system for elucidating conserved mechanisms to achieve lifespan extension that are likely to drive therapeutic approaches to extend human lifespan and healthspan.

6.
Aging (Albany NY) ; 8(4): 810-30, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27099939

RESUMO

The Saccharomyces cerevisiae Forkhead Box (Fox) orthologs, Forkheads (Fkh) 1 and 2, are conserved transcription factors required for stress response, cell cycle progression and longevity. These yeast proteins play a key role in mitotic progression through activation of the ubiquitin E3 ligase Anaphase Promoting Complex (APC) via transcriptional control. Here, we used genetic and molecular analyses to demonstrate that the APC E3 activity is necessary for mitotic Fkh1 protein degradation and subsequent cell cycle progression. We report that Fkh1 protein degradation occurs specifically during mitosis, requires APCCdc20 and proteasome activity, and that a stable Fkh1 mutant reduces normal chronological lifespan, increases genomic instability, and increases sensitivity to stress. Our data supports a model whereby cell cycle progression through mitosis and G1 requires the targeted degradation of Fkh1 by the APC. This is significant to many fields as these results impact our understanding of the mechanisms underpinning the control of aging and cancer.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Genoma , Longevidade/fisiologia , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Ciclo Celular/fisiologia , Saccharomyces cerevisiae
7.
J Biol Chem ; 290(25): 15393-15404, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25869125

RESUMO

The enzyme family of heterotrimeric AMP-dependent protein kinases is activated upon low energy states, conferring a switch toward energy-conserving metabolic pathways through immediate kinase actions on enzyme targets and delayed alterations in gene expression through its nuclear relocalization. This family is evolutionarily conserved, including the presence of a ubiquitin-associated (UBA) motif in most catalytic subunits. The potential for the UBA domain to promote protein associations or direct subcellular location, as seen in other UBA-containing proteins, led us to query whether the UBA domain within the yeast AMP-dependent protein kinase ortholog, SNF1 kinase, was important in these aspects of its regulation. Here, we demonstrate that conserved UBA motif mutations significantly alter SNF1 kinase activation and biological activity, including enhanced allosteric subunit associations and increased oxidative stress resistance and life span. Significantly, the enhanced UBA-dependent longevity and oxidative stress response are at least partially dependent on the Fkh1 and Fkh2 stress response transcription factors, which in turn are shown to influence Snf1 gene expression.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Serina-Treonina Quinases/biossíntese , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ativação Enzimática/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Methods Mol Biol ; 1163: 223-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24841311

RESUMO

Life-span assays in yeast are invaluable in characterizing the functions of gene products on cellular aging. Replicative life-span (RLS) is a measure of the number of divisions an individual cell can undergo. In this assay daughter cells are removed using a tetrad dissection microscope with a micromanipulator and scored. Chronological life-span (CLS) measures the length of time nondividing cells survive. A culture is grown to stationary phase with samples removed over time to assess the survival within the population. The strength of the yeast system lies in the ease of genetically manipulating genes of interest and the evolutionarily conserved nature of the genes found to influence longevity. Here, we describe methods used to measure yeast RLS and CLS.


Assuntos
Divisão Celular/genética , Senescência Celular/genética , Biologia Molecular/métodos , Longevidade/genética , Saccharomyces cerevisiae/genética
9.
PLoS One ; 9(1): e84611, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489651

RESUMO

Thrombin and hypoxia are important players in breast cancer progression. Breast cancers often develop drug resistance, but mechanisms linking thrombin and hypoxia to drug resistance remain unresolved. Our studies using Doxorubicin (DOX) resistant MCF7 breast cancer cells reveals a mechanism linking DOX exposure with hypoxic induction of DOX resistance. Global expression changes between parental and DOX resistant MCF7 cells were examined. Westerns, Northerns and immunocytochemistry were used to validate drug resistance and differentially expressed genes. A cluster of genes involved in the anticoagulation pathway, with Tissue Factor Pathway Inhibitor 1 (TFPI1) the top hit, was identified. Plasmids overexpressing TFPI1 were utilized, and 1% O2 was used to test the effects of hypoxia on drug resistance. Lastly, microarray datasets from patients with drug resistant breast tumors were interrogated for TFPI1 expression levels. TFPI1 protein levels were found elevated in 3 additional DOX resistant cells lines, from humans and rats, indicating evolutionarily conservation of the effect. Elevated TFPI1 in DOX resistant cells was active, as thrombin protein levels were coincidentally low. We observed elevated HIF1α protein in DOX resistant cells, and in cells with forced expression of TFPI1, suggesting TFPI1 induces HIF1α. TFPI1 also induced c-MYC, c-SRC, and HDAC2 protein, as well as DOX resistance in parental cells. Growth of cells in 1% O2 induced elevated HIF1α, BCRP and MDR-1 protein, and these cells were resistant to DOX. Our in vitro results were consistent with in vivo patient datasets, as tumors harboring increased BCRP and MDR-1 expression also had increased TFPI1 expression. Our observations are clinically relevant indicating that DOX treatment induces an anticoagulation cascade, leading to inhibition of thrombin and the expression of HIF1α. This in turn activates a pathway leading to drug resistance.


Assuntos
Doxorrubicina/farmacologia , Lipoproteínas/metabolismo , Animais , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipoproteínas/genética , Células MCF-7 , Células Tumorais Cultivadas
10.
PLoS Genet ; 8(3): e1002583, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438832

RESUMO

Forkhead box O (FOXO) transcription factors have a conserved function in regulating metazoan lifespan. A key function in this process involves the regulation of the cell cycle and stress responses including free radical scavenging. We employed yeast chronological and replicative lifespan assays, as well as oxidative stress assays, to explore the potential evolutionary conservation of function between the FOXOs and the yeast forkhead box transcription factors FKH1 and FKH2. We report that the deletion of both FKH genes impedes normal lifespan and stress resistance, particularly in stationary phase cells, which are non-responsive to caloric restriction. Conversely, increased expression of the FKHs leads to extended lifespan and improved stress response. Here we show the Anaphase-Promoting Complex (APC) genetically interacts with the Fkh pathway, likely working in a linear pathway under normal conditions, as fkh1Δ fkh2Δ post-mitotic survival is epistatic to that observed in apc5(CA) mutants. However, under stress conditions, post-mitotic survival is dramatically impaired in apc5(CA) fkh1Δ fkh2Δ, while increased expression of either FKH rescues APC mutant growth defects. This study establishes the FKHs role as evolutionarily conserved regulators of lifespan in yeast and identifies the APC as a novel component of this mechanism under certain conditions, likely through combined regulation of stress response, genomic stability, and cell cycle regulation.


Assuntos
Proteínas de Ciclo Celular , Fatores de Transcrição Forkhead , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complexos Ubiquitina-Proteína Ligase , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc5 do Ciclossomo-Complexo Promotor de Anáfase , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Longevidade/genética , Mitose , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo
11.
Planta ; 233(6): 1223-35, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21327815

RESUMO

To increase our knowledge of anaphase promoting complex (APC/C) function during plant development, we characterized an Arabidopsis thaliana T-DNA-insertion line where the T-DNA fell within the 5' regulatory region of the APC10 gene. The insert disrupted endogenous expression, resulting in overexpression of APC10 mRNA from the T-DNA- internal CaMV 35S promoter, and increased APC10 protein. Overexpression of APC10 produced phenotypes resembling those of known auxin and ethylene mutants, and increased expression of two tested auxin-regulated genes, small auxin up RNA (SAUR) 15 and SAUR24. Taken together, our data suggests that elevated APC10 likely mimics auxin and ethylene sensitive phenotypes, expanding our understanding of proteolytic processes in hormone regulation of plant development.


Assuntos
Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Arabidopsis/genética , Sequência de Bases , Cotilédone/citologia , DNA Bacteriano/genética , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA