Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893536

RESUMO

In this study, we report on the enhancement of the light extraction efficiency of sol-gel-derived Y3Al5O12:Ce3+ (YAG:Ce) coatings using ZnO nanowire (NW) arrays. The ZnO NWs were grown by hydrothermal synthesis from a ZnO seed layer directly deposited on a YAG:Ce coating. Highly dense and vertically aligned ZnO NW arrays were evidenced on the top of the YAG:Ce coating by electron microscopy. A photoluminescence study showed that this original design leads to a different angular distribution of light together with an increase in emission efficiency of the YAG:Ce coating upon blue excitation, up to 60% more efficient compared to a non-structured YAG:Ce coating (without NWs). These improvements are ascribed to multi-scattering events for photons within the structure, allowing them to escape from the phosphor layer by taking optical paths different from those of the non-structured coating. This strategy of light extraction enhancement appears to be very promising, since it uses soft chemical processes and cheap ZnO NWs and is applicable to any sol-gel-derived luminescent coating.

2.
Dalton Trans ; 43(3): 1072-81, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24165703

RESUMO

This work focuses on the study of BaMgAl10O17:Eu(2+) (BAM:Eu) nanophosphors prepared by a microwave-assisted combustion procedure and more especially on the polymer/BAM:Eu nanocomposite film suitable for optical devices such as solid-state-lighting. Powder presented a specific nanomorphology, highly friable and thus easily ground into fine particles. They were then homogeneously dispersed into a polymer solution (poly(N-vinylpyrrolidone) or PVP) to elaborate a polymer phosphor nanocomposite. The structural, morphological and optical features of the nanocomposite film have been studied and compared to those of a pristine PVP film and BAM:Eu powder. All the characterizations (XRD, SEM, SAXS, etc.) proved that the blue phosphor nanoparticles are well incorporated into the polymer nanocomposite film which exhibited the characteristic blue emission of Eu(2+) under UV light excitation. Furthermore, the photostability of the polymer/phosphor nanocomposite film has been studied after exposure to accelerated artificial photoageing at wavelengths above 300 nm.

3.
ACS Appl Mater Interfaces ; 6(1): 252-8, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24320991

RESUMO

In this work, we report the solvothermal synthesis of Ce-doped YAG (YAG:Ce) nanoparticles (NPs) and their association with a free-Cd CuInS2/ZnS (CIS/ZnS) core/shell QDs for application into white light emitting diode (WLED). 1500 °C-annealed YAG:Ce NPs and CIS/ZnS core/shell QDs exhibited intense yellow and red emissions band with maxima at 545 and 667 nm, respectively. Both YAG:Ce nanophosphor and CIS/ZnS QDs showed high photoluminescence quantum yield (PL QY) of about 50% upon 460 nm excitation. YAG:Ce nanophosphor layer and bilayered YAG:Ce nanophosphor-CIS/ZnS QDs were applied on blue InGaN chip as converter wavelength to achieve WLED. While YAG:Ce nanophosphor converter layer showed low color rendering index (CRI) and cold white light, bilayered YAG:Ce nanophosphor-CIS/ZnS QDs displayed higher CRI of about 84 and warm white light with a correlated color temperature (CCT) of 2784 K. WLED characteristics were measured as a function of forward current from 20 to 1200 mA. The white light stability of bilayered nanophosphor-QDs-based WLED operated at 200 mA was also studied as a function of operating time up to 40 h. Interestingly, CRI and CCT of such device tend to remain constant after 7 h of operating time suggesting that layer-by-layer structure of YAG:Ce phosphor and red-emitting CIS/ZnS QDs could be a good solution to achieve stable warm WLED, especially when high current density is applied.

4.
Langmuir ; 28(37): 13526-35, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22920096

RESUMO

This paper reports the initial results of an original and simple method to elaborate flexible, self-standing, and thick luminescent films suitable for optical devices. PVP/Y(3)Ga(5)O(12):Tb(3+) nanocomposite films have been successfully achieved from a sol-gel derived Y(3)Ga(5)O(12):Tb(3+) powder and an alcoholic solution of poly-N-vinylpyrrolidone (PVP). The structural, morphological, and optical properties of these nanocomposite films have been studied and compared to those of a pristine PVP film and Y(3)Ga(5)O(12):Tb(3+) powder. The nanocomposite films were characterized by infrared and Raman spectroscopies as well as scanning and transmission electron microscopies (SEM and TEM) and demonstrated good dispersion of the phosphor particles within the polymer matrix via an alveolar mesostructure. The optical properties of these nanocomposites were fully characterized, and both their excitation and emission spectra and decay curves were recorded. Furthermore, photostability of the nanocomposite films and of the luminescent raw powder has been studied after exposure to an accelerated artificial photoageing at wavelengths higher than 300 nm. The elaboration process used is both tunable and applicable to a large variety of powders and polymers because it does not require any additive to form homogeneous and easily shapeable phosphor/polymer nanocomposites applicable in a large variety of optical devices such as solid-state-lighting.

5.
Dalton Trans ; 39(37): 8706-17, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20714513

RESUMO

Acetylacetone has been used as a chemical modifier for the synthesis of undoped and Tb(3+)-doped Y(3)Al(5)O(12) powders. A systematic investigation concerning its influence on the structural and morphological properties of amorphous and crystallized samples has been carried out. These properties have been comparatively studied by means of X-ray diffraction, infrared spectroscopy, SEM, XAS and SAXS. (27)Al NMR and EPR experiments have been performed to complete the study. The combined results have evidenced that acetylacetone promotes organic groups departure during calcination, entailing a better structural organization at lower temperatures compared with unmodified powders. Structuration has been proven to occur at short-scale range until a 600 degrees C heating treatment before being extended by coalescence at higher temperatures. Finally, the presence of acac ligands on the alkoxides leads to a monomer-cluster aggregation process, and thus to a more open network.

6.
Dalton Trans ; 39(37): 8718-24, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20725657

RESUMO

Tb(3+)-doped Y(3)Al(5)O(12) powders have been synthesized from alkoxide precursors using, or not using, acetylacetone as a chemical modifier. The terbium oxidation state and local environment of amorphous and crystallized powders have been comparatively investigated by means of X-ray absorption near-edge structures (XANES) and extended X-ray absorption fine structure (EXAFS) while laser-induced luminescence was used to study their optical properties. Excitation and emission spectra have been recorded and a relative luminescence yield has been assessed upon 277 nm excitation. Whatever the sample, the terbium oxidation state remains +III and, for a similar heating treatment until 900 degrees C, its local environment appears to be better organized in powders modified by acetylacetone. Structural parameters obtained during XAS study are consistent with the YAG structure in which Tb atoms are in solid solution with Y ones. Besides, Tb(3+) characteristic green luminescence has been recorded for all samples, even those amorphous. It has been evidenced that the use of acetylacetone leads to more efficient luminescent materials for calcination temperatures ranging from 400 degrees C to 900 degrees C upon 277 nm excitation. Discrepancies between optical properties will be discussed with regards to the terbium local environment and expected luminescence features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA