Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parkinsons Dis ; 13(7): 1127-1147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638450

RESUMO

BACKGROUND: Evidence supports a role for the gut-brain axis in Parkinson's disease (PD). Mice overexpressing human wild type α- synuclein (Thy1-haSyn) exhibit slow colonic transit prior to motor deficits, mirroring prodromal constipation in PD. Identifying molecular changes in the gut could provide both biomarkers for early diagnosis and gut-targeted therapies to prevent progression. OBJECTIVE: To identify early molecular changes in the gut-brain axis in Thy1-haSyn mice through gene expression profiling. METHODS: Gene expression profiling was performed on gut (colon) and brain (striatal) tissue from Thy1-haSyn and wild-type (WT) mice aged 1 and 3 months using 3' RNA sequencing. Analysis included differential expression, gene set enrichment and weighted gene co-expression network analysis (WGCNA). RESULTS: At one month, differential expression (Thy1-haSyn vs. WT) of mitochondrial genes and pathways related to PD was discordant between gut and brain, with negative enrichment in brain (enriched in WT) but positive enrichment in gut. Linear regression of WGCNA modules showed partial independence of gut and brain gene expression changes. Thy1-haSyn-associated WGCNA modules in the gut were enriched for PD risk genes and PD-relevant pathways including inflammation, autophagy, and oxidative stress. Changes in gene expression were modest at 3 months. CONCLUSIONS: Overexpression of haSyn acutely disrupts gene expression in the colon. While changes in colon gene expression are highly related to known PD-relevant mechanisms, they are distinct from brain changes, and in some cases, opposite in direction. These findings are in line with the emerging view of PD as a multi-system disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Colo , Modelos Animais de Doenças , Expressão Gênica , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110404

RESUMO

G protein-coupled receptors (GPCRs) regulate many pathophysiological processes and are major therapeutic targets. The impact of disease on the subcellular distribution and function of GPCRs is poorly understood. We investigated trafficking and signaling of protease-activated receptor 2 (PAR2) in colitis. To localize PAR2 and assess redistribution during disease, we generated knockin mice expressing PAR2 fused to monomeric ultrastable green fluorescent protein (muGFP). PAR2-muGFP signaled and trafficked normally. PAR2 messenger RNA was detected at similar levels in Par2-mugfp and wild-type mice. Immunostaining with a GFP antibody and RNAScope in situ hybridization using F2rl1 (PAR2) and Gfp probes revealed that PAR2-muGFP was expressed in epithelial cells of the small and large intestine and in subsets of enteric and dorsal root ganglia neurons. In healthy mice, PAR2-muGFP was prominently localized to the basolateral membrane of colonocytes. In mice with colitis, PAR2-muGFP was depleted from the plasma membrane of colonocytes and redistributed to early endosomes, consistent with generation of proinflammatory proteases that activate PAR2 PAR2 agonists stimulated endocytosis of PAR2 and recruitment of Gαq, Gαi, and ß-arrestin to early endosomes of T84 colon carcinoma cells. PAR2 agonists increased paracellular permeability of colonic epithelial cells, induced colonic inflammation and hyperalgesia in mice, and stimulated proinflammatory cytokine release from segments of human colon. Knockdown of dynamin-2 (Dnm2), the major colonocyte isoform, and Dnm inhibition attenuated PAR2 endocytosis, signaling complex assembly and colonic inflammation and hyperalgesia. Thus, PAR2 endocytosis sustains protease-evoked inflammation and nociception and PAR2 in endosomes is a potential therapeutic target for colitis.


Assuntos
Colo/metabolismo , Endocitose/fisiologia , Corantes Fluorescentes/metabolismo , Inflamação/metabolismo , Dor/metabolismo , Receptor PAR-2/metabolismo , Animais , Arrestinas/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Feminino , Gânglios Espinais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade/fisiologia , Transdução de Sinais/fisiologia
4.
Front Microbiol ; 13: 1072534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704560

RESUMO

Clostridioides difficile infection (CDI) causes intestinal injury. Toxin A and toxin B cause intestinal injury by inducing colonic epithelial cell apoptosis. ADS024 is a Bacillus velezensis strain in development as a single-strain live biotherapeutic product (SS-LBP) to prevent the recurrence of CDI following the completion of standard antibiotic treatment. We evaluated the protective effects of the sterile filtrate and ethyl acetate extract of conditioned media from ADS024 and DSM7 (control strain) against mucosal epithelial injury in toxin-treated human colonic tissues and apoptosis in toxin-treated human colonic epithelial cells. Ethyl acetate extracts were generated from conditioned culture media from DSM7 and ADS024. Toxin A and toxin B exposure caused epithelial injury in fresh human colonic explants. The sterile filtrate of ADS024, but not DSM7, prevented toxin B-mediated epithelial injury in fresh human colonic explants. Both sterile filtrate and ethyl acetate extract of ADS024 prevented toxin-mediated apoptosis in human colonic epithelial cells. The anti-apoptotic effects of ADS024 filtrate and ethyl acetate extract were dependent on the inhibition of caspase 3 cleavage. The sterile filtrate, but not ethyl acetate extract, of ADS024 partially degraded toxin B. ADS024 inhibits toxin B-mediated apoptosis in human colonic epithelial cells and colonic explants.

5.
Cell Death Dis ; 13(1): 8, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34923573

RESUMO

While apoptosis plays a significant role in intestinal homeostasis, it can also be pathogenic if overactive during recovery from inflammation. We recently reported that microRNA-24-3p (miR-24-3p) is elevated in the colonic epithelium of ulcerative colitis patients during active inflammation, and that it reduced apoptosis in vitro. However, its function during intestinal restitution following inflammation had not been examined. In this study, we tested the influence of miR-24-3p on mucosal repair by studying recovery from colitis in both novel miR-24-3p knockout and miR-24-3p-inhibited mice. We observed that knockout mice and mice treated with a miR-24-3p inhibitor had significantly worsened recovery based on weight loss, colon length, and double-blinded histological scoring. In vivo and in vitro analysis of miR-24-3p inhibition in colonic epithelial cells revealed that inhibition promotes apoptosis and increases levels of the pro-apoptotic protein BIM. Further experiments determined that silencing of BIM reversed the pro-apoptotic effects of miR-24-3p inhibition. Taken together, these data suggest that miR-24-3p restrains intestinal epithelial cell apoptosis by targeting BIM, and its loss of function is detrimental to epithelial restitution following intestinal inflammation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Células Epiteliais/metabolismo , Inflamação/genética , Intestinos/patologia , MicroRNAs/metabolismo , Animais , Apoptose , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Transfecção
6.
Gastroenterology ; 160(7): 2409-2422.e19, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33617890

RESUMO

BACKGROUND & AIMS: Alterations in microRNA (miRNA) and in the intestinal barrier are putative risk factors for irritable bowel syndrome (IBS). We aimed to identify differentially expressed colonic mucosal miRNAs, their targets in IBS compared to healthy controls (HCs), and putative downstream pathways. METHODS: Twenty-nine IBS patients (15 IBS with constipation [IBS-C], 14 IBS with diarrhea [IBS-D]), and 15 age-matched HCs underwent sigmoidoscopy with biopsies. A nCounter array was used to assess biopsy specimen-associated miRNA levels. A false discovery rate (FDR) < 10% was considered significant. Real-time polymerase chain reaction (PCR) was used to validate differentially expressed genes. To assess barrier function, trans-epithelial electrical resistance (TEER) and dextran flux assays were performed on Caco-2 intestinal epithelial cells that were transfected with miRNA-inhibitors or control inhibitors. Protein expression of barrier function associated genes was confirmed using western blots. RESULTS: Four out of 247 miRNAs tested were differentially expressed in IBS compared to HCs (FDR < 10%). Real-time PCR validation suggested decreased levels of miR-219a-5p and miR-338-3p in IBS (P = .026 and P = .004), and IBS-C (P = .02 and P = .06) vs. HCs as the strongest associations. Inhibition of miR-219a-5p resulted in altered expression of proteasome/barrier function genes. Functionally, miR-219a-5p inhibition enhanced the permeability of intestinal epithelial cells as TEER was reduced (25-50%, P < .05) and dextran flux was increased (P < .01). Additionally, inhibition of miR-338-3p in cells caused alterations in the mitogen-activated protein kinase (MAPK) signaling pathway genes. CONCLUSION: Two microRNAs that potentially affect permeability and visceral nociception were identified to be altered in IBS patients. MiR-219a-5p and miR-338-3p potentially alter barrier function and visceral hypersensitivity via neuronal and MAPK signaling and could be therapeutic targets in IBS.


Assuntos
Regulação para Baixo/genética , Síndrome do Intestino Irritável/genética , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/metabolismo , Adolescente , Adulto , Estudos de Casos e Controles , Colo/metabolismo , Constipação Intestinal/genética , Diarreia/genética , Feminino , Humanos , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/complicações , Masculino , Pessoa de Meia-Idade , Permeabilidade , Adulto Jovem
7.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494263

RESUMO

The neuroendocrine circuit of the corticotropin-releasing hormone (CRH) family peptides, via their cognate receptors CRHR1 and CRHR2, copes with psychological stress. However, peripheral effects of the CRH system in colon cancer remains elusive. Thus, we investigate the role of CRHR1 and CRHR2 in colon cancer. Human colon cancer biopsies were used to measure the mRNA levels of the CRH family by quantitative real-time PCR. Two animal models of colon cancer were used: Apcmin/+ mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. The mRNA levels of CRHR2 and UCN III are reduced in human colon cancer tissues compared to those of normal tissues. Crhr1 deletion suppresses the tumor development and growth in Apcmin/+ mice, while Crhr2 deficiency exacerbates the tumorigenicity. Crhr1 deficiency not only inhibits the expression of tumor-promoting cyclooxygenase 2, but also upregulates tumor-suppressing phospholipase A2 in Apcmin/+ mice; however, Crhr2 deficiency does not change these expressions. In the AOM/DSS model, Crhr2 deficiency worsens the tumorigenesis. In conclusion, Crhr1 deficiency confers tumor-suppressing effects in Apcmin/+ mice, but Crhr2 deficiency worsens the tumorigenicity in both Apcmin/+ and AOM/DSS-treated mice. Therefore, pharmacological inhibitors of CRHR1 or activators of CRHR2 could be of significance as anti-colon cancer drugs.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/etiologia , Neoplasias do Colo/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinógenos/farmacologia , Transformação Celular Neoplásica/genética , Neoplasias do Colo/patologia , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , RNA Mensageiro/genética , Receptores de Hormônio Liberador da Corticotropina/genética , Índice de Gravidade de Doença
8.
Pharmacol Res ; 165: 105412, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412276

RESUMO

A variety of biological processes are regulated by posttranslational modifications. Posttranslational modifications including phosphorylation, ubiquitination, glycosylation, and proteolytic cleavage, control diverse physiological functions in the gastrointestinal tract. Therefore, a better understanding of their implications in intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, celiac disease, and colorectal cancer would provide a basis for the identification of novel biomarkers as well as attractive therapeutic targets. Posttranslational modifications can be common denominators, as well as distinct biomarkers, characterizing pathological differences of various intestinal diseases. This review provides experimental evidence that identifies changes in posttranslational modifications from patient samples, primary cells, or cell lines in intestinal disorders, and a summary of carefully selected information on the use of pharmacological modulators of protein modifications as therapeutic options.


Assuntos
Fármacos Gastrointestinais/uso terapêutico , Enteropatias/tratamento farmacológico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Fármacos Gastrointestinais/farmacologia , Humanos
9.
Am J Physiol Gastrointest Liver Physiol ; 320(1): G30-G42, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146548

RESUMO

Protease-activated receptor 2 (PAR2) regulates inflammatory responses and lipid metabolism. However, its precise role in colitis remains unclear. In this study, we aimed to investigate the function of PAR2 in high-fat diet-fed mice with colitis and its potential role in autophagy. PAR2+/+ and PAR2-/- mice were fed a high-fat diet (HFD) for 7 days before colitis induction with dextran sodium sulfate. Deletion of PAR2 and an HFD significantly exacerbated colitis, as shown by increased mortality, body weight loss, diarrhea or bloody stools, colon length shortening, and mucosal damage. Proinflammatory cytokine levels were elevated in HFD-fed PAR2-/- mice and in cells treated with the PAR2 antagonist GB83, palmitic acid (PA), and a cytokine cocktail (CC). Damaging effects of PAR2 blockage were associated with autophagy regulation by reducing the levels of YAP1, SIRT1, PGC-1α, Atg5, and LC3A/B-I/II. In addition, mitochondrial dysfunction was demonstrated only in cells treated with GB83, PA, and CC. Reduced cell viability and greater induction of apoptosis, as shown by increased levels of cleaved caspase-9, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP), were observed in cells treated with GB83, PA, and CC but not in those treated with only PA and CC. Collectively, protective effects of PAR2 were elucidated during inflammation accompanied by a high-fat environment by promoting autophagy and inhibiting apoptosis, suggesting PAR2 as a therapeutic target for inflammatory bowel disease co-occurring with metabolic syndrome.NEW & NOTEWORTHY Deletion of PAR2 with high-fat diet feeding exacerbates colitis in a murine colitis model. Proinflammatory effects of PAR2 blockage in a high-fat environment were associated with an altered balance between autophagy and apoptosis. Increased colonic levels of PAR2 represent as a therapeutic strategy for IBD co-occurring with metabolic syndrome.


Assuntos
Apoptose/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Receptor PAR-2/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Receptor PAR-2/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 319(6): G646-G654, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026230

RESUMO

Exosomes represent secretory membranous vesicles used for the information exchange between cells and organ-to-organ communication. Exosome crosstalk mechanisms are involved in the regulation of several inflammatory bowel disease (IBD)-associated pathophysiological intestinal processes such as barrier function, immune responses, and intestinal flora. Functional biomolecules, mainly noncoding RNAs (ncRNAs), are believed to be transmitted between the mammalian cells via exosomes that likely play important roles in cell-to-cell communication, both locally and systemically. MicroRNAs (miRNAs) encapsulated in exosomes have generated substantial interest because of their critical roles in multiple pathophysiological processes. In addition, exosomal miRNAs are implicated in the gut health. MiRNAs are selectively and actively loaded into the exosomes and then transferred to the target recipient cell where they manipulate cell function through posttranscriptional silencing of target genes. Intriguingly, miRNA profile of exosomes differs from their cellular counterparts suggesting an active sorting and packaging mechanism of exosomal miRNAs. Even more exciting is the involvement of posttranscriptional modifications in the specific loading of miRNAs into exosomes, but the underlying mechanisms of how these modifications direct ncRNA sorting have not been established. This review gives a brief overview of the status of exosomes and exosomal miRNAs in IBD and also discusses potential mechanisms of exosomal miRNA sorting and delivering.


Assuntos
Exossomos/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/fisiopatologia , MicroRNAs/genética , Animais , Humanos
11.
EMBO Rep ; 21(10): e49332, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32875703

RESUMO

Autotaxin (ATX) converts lysophosphatidylcholine and sphingosyl-phosphorylcholine into lysophosphatidic acid and sphingosine 1-phosphate, respectively. Despite the pivotal function of ATX in lipid metabolism, mechanisms by which ATX regulates immune and inflammatory disorders remain elusive. Here, using myeloid cell lineage-restricted Atx knockout mice, we show that Atx deficiency disrupts membrane microdomains and lipid rafts, resulting in the inhibition of Toll-like receptor 4 (TLR4) complex formation and the suppression of adaptor recruitment, thereby inhibiting TLR4-mediated responses in macrophages. Accordingly, TLR4-induced innate immune functions, including phagocytosis and iNOS expression, are attenuated in Atx-deficient macrophages. Consequently, Atx-/- mice exhibit a higher bacterial prevalence in the intestinal mucosa compared to controls. When combined with global Il10-/- mice, which show spontaneous colitis due to the translocation of luminal commensal microbes into the mucosa, myeloid cell lineage-restricted Atx knockout accelerates colitis development compared to control littermates. Collectively, our data reveal that Atx deficiency compromises innate immune responses, thereby promoting microbe-associated gut inflammation.


Assuntos
Colite , Receptor 4 Toll-Like , Animais , Colite/genética , Imunidade , Inflamação/genética , Camundongos , Camundongos Knockout , Receptor 4 Toll-Like/genética
13.
Am J Physiol Gastrointest Liver Physiol ; 318(1): G34-G40, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545920

RESUMO

The inflammatory bowel diseases (IBD) are a complex set of chronic gastrointestinal inflammatory conditions arising from the interplay of genetic and environmental factors. This study focuses on noncoding RNA transcripts as potential mediators of IBD pathophysiology. One particular gene, interferon γ-antisense 1 (IFNG-AS1), has been consistently observed to be elevated in the intestinal mucosa of patients with actively inflamed IBD versus healthy controls. This study builds on these observations, demonstrating that the second splice variant is specifically altered, and this alteration even stratifies within inflamed patients. With the use of a CRISPR-based overexpression system, IFNG-AS1 was selectively overexpressed directly from its genomic loci in T cells. An unbiased mRNA array on these cells identified a large increase in many inflammatory cytokines and a decrease in anti-inflammatory cytokines after IFNG-AS1 overexpression. Media from T cells overexpressing IFNG-AS1 elicited an inflammatory signaling cascade in primary human peripheral blood mononuclear cells, suggesting the potential functional importance of IFNG-AS1 in IBD pathophysiology. The significance of these results is amplified by studies suggesting that a single-nucleotide polymorphism in IFNG-AS1, rs7134599, was associated with both subtypes of patients with IBD independently of race.NEW & NOTEWORTHY Long noncoding RNAs are an emerging field of inflammatory bowel disease (IBD) research. This study mechanistically analyzes the role of a commonly upregulated gene in IBD and shows IFNG-AS1 as a mediator of an inflammatory signaling cascade.


Assuntos
Colite Ulcerativa/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , RNA Longo não Codificante/metabolismo , Células Th1/metabolismo , Equilíbrio Th1-Th2 , Células Th2/metabolismo , Estudos de Casos e Controles , Comunicação Celular , Células Cultivadas , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/imunologia , Colo/patologia , Citocinas/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Fatores de Risco , Índice de Gravidade de Doença , Transdução de Sinais , Células Th1/imunologia , Células Th2/imunologia
14.
J Infect Dis ; 221(10): 1623-1635, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31793629

RESUMO

BACKGROUND: Clostridium difficile infection (CDI) causes diarrhea and colitis. We aimed to find a common pathogenic pathway in CDI among humans and mice by comparing toxin-mediated effects in human and mouse colonic tissues. METHOD: Using multiplex enzyme-linked immunosorbent assay, we determined the cytokine secretion of toxin A- and B-treated human and mouse colonic explants. RESULTS: Toxin A and toxin B exposure to fresh human and mouse colonic explants caused different patterns of cytokine secretion. Toxin A induced macrophage inflammatory protein (MIP) 1α secretion in both human and mouse explants. Toxin A reduced the expression of chloride anion exchanger SLC26A3 expression in mouse colonic explants and human colonic epithelial cells. Patients with CDI had increased colonic MIP-1 α expression and reduced colonic SLC26A3 (solute carrier family 26, member 3) compared with controls. Anti-MIP-1 α neutralizing antibody prevented death, ameliorated colonic injury, reduced colonic interleukin 1ß (IL-1ß) messenger RNA expression, and restored colonic SLC26a3 expression in C. difficile-infected mice. The anti-MIP-1 α neutralizing antibody prevented CDI recurrence. SLC26a3 inhibition augmented colonic IL-1 ß messenger RNA expression and abolished the protective effect of anti-MIP-1 α neutralizing antibody in mice with CDI. CONCLUSION: MIP-1 α is a common toxin A-dependent chemokine in human and mouse colon. MIP-1 α mediates detrimental effects by reducing SLC26a3 and enhancing IL-1 ß expression in the colon.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Quimiocina CCL3/imunologia , Clostridioides difficile , Infecções por Clostridium/terapia , Proteínas Inflamatórias de Macrófagos/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Toxinas Bacterianas/toxicidade , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Regulação para Baixo , Enterotoxinas/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
15.
J Clin Med ; 8(10)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614860

RESUMO

Chronic stress is thought to be involved in the occurrence and progression of multiple diseases, via mechanisms that still remain largely unknown. Interestingly, key regulators of the stress response, such as members of the corticotropin-releasing-hormone (CRH) family of neuropeptides and receptors, are now known to be implicated in the regulation of chronic inflammation, one of the predisposing factors for oncogenesis and disease progression. However, an interrelationship between stress, inflammation, and malignancy, at least at the molecular level, still remains unclear. Here, we attempt to summarize the current knowledge that supports the inseparable link between chronic stress, inflammation, and colorectal cancer (CRC), by modulation of a cascade of molecular signaling pathways, which are under the regulation of CRH-family members expressed in the brain and periphery. The understanding of the molecular basis of the link among these processes may provide a step forward towards personalized medicine in terms of CRC diagnosis, prognosis and therapeutic targeting.

16.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G802-G810, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545921

RESUMO

Exosomes are cellular vesicles involved in intercellular communication via their specialized molecular cargo, such as miRNAs. Substance P (SP), a neuropeptide/hormone, and its high-affinity receptor, NK-1R, are highly expressed during colonic inflammation. Our previous studies show that SP/NK-1R signaling stimulates differential miRNA expression and promotes colonic epithelial cell proliferation. In this study, we examined whether SP/NK-1R signaling regulates exosome biogenesis and exosome-miRNA cargo sorting. Moreover, we examined the role of SP/NK-1R signaling in exosome-regulated cell proliferation and migration. Exosomes produced by human colonic NCM460 epithelial cells overexpressing NK-1R (NCM460-NK1R) were isolated from culture media. Exosome abundance and uptake were assessed by Western blot analysis (abundance) and Exo-Green fluorescence microscopy (abundance and uptake). Cargo-miRNA levels were assessed by RT-PCR. Cell proliferation and migration were assessed using xCELLigence technology. Colonic epithelial exosomes were isolated from mice pretreated with SP for 3 days. Cell proliferation in vivo was assessed by Ki-67 staining. SP/NK-1R signaling in human colonic epithelial cells (in vitro) and mouse colons (in vivo) increased 1) exosome production, 2) the level of fluorescence in NCM460s treated with Exo-Green-labeled exosomes, and 3) the level of miR-21 in exosome cargo. Moreover, our results showed that SP/NK-1R-induced cell proliferation and migration are at least in part dependent on intercellular communication via exosomal miR-21 in vitro and in vivo. Our results demonstrate that SP/NK-1R signaling regulates exosome biogenesis and induces its miR-21 cargo sorting. Moreover, exosomal miR-21 promotes proliferation and migration of target cells.NEW & NOTEWORTHY Substance P signaling regulates exosome production in human colonic epithelial cells and colonic crypts in wild-type mice. MiR-21 is selectively sorted into exosomes induced by Substance P stimulation and promotes cell proliferation and migration in human colonocytes and mouse colonic crypts.


Assuntos
Inflamação/metabolismo , Mucosa Intestinal/metabolismo , MicroRNAs/metabolismo , Receptores da Neurocinina-1/metabolismo , Substância P/metabolismo , Animais , Movimento Celular/imunologia , Proliferação de Células/fisiologia , Células Cultivadas , Colite/metabolismo , Colo/metabolismo , Colo/patologia , Exossomos/metabolismo , Citometria de Fluxo , Humanos , Camundongos , Transdução de Sinais
17.
Life Sci ; 231: 116571, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31207308

RESUMO

AIMS: The role of long non-coding RNA's (lncRNA) in the biology of ulcerative colitis (UC) is not well understood. We have previously detected changes in lncRNA's associated with UC. This study aims to characterize one specific lncRNA, CDKN2B-AS1 whose expression was downregulated in UC patients. MAIN METHODS: UC biopsies were used to determine the levels of linear and circular CDKN2B-AS1 relative to healthy controls. In situ hybridization was used to determine the localization of CKDN2B-AS1 in the colon. The intestinal epithelial cell line, Caco-2, was used to study the effects of shRNA mediated loss of CDKN2B-AS1. Transepithelial electrical resistance was used to measure barrier function. An RT-PCR array, immunoblots and immunohistochemistry were used to determine tight junction proteins that CDKN2B-AS1 regulates. KEY FINDINGS: CDKN2B-AS1 is transcribed into not only linear transcripts but also as circular RNA through back-splicing and both forms are decreased in IBD. CDKN2B-AS1 is expressed mainly in colonic epithelial cells. Cells with down-regulated CDKN2B-AS1 exhibited increased proliferation and no alterations in apoptosis. Targeting both the linear and circular transcripts of CDKN2B-AS1 with short hairpin RNAs enhanced barrier function. We subsequently determined that Claudin-2, a "leaky Claudin" known to decrease barrier function, was decreased in CDKN2B-AS1 knockdown cells. SIGNIFICANCE: This study identifies a novel lncRNA with both linear and circular transcripts affecting UC biology.


Assuntos
Doenças Inflamatórias Intestinais/genética , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Adulto , Apoptose/genética , Células CACO-2 , Proliferação de Células/genética , Claudina-2/genética , Claudina-2/metabolismo , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/biossíntese , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , DNA Circular/genética , Células Epiteliais/metabolismo , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , RNA/genética , RNA Circular , RNA Longo não Codificante/metabolismo
18.
Am J Pathol ; 189(9): 1763-1774, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31220450

RESUMO

Inflammatory bowel disease is characterized by high levels of inflammation and loss of barrier integrity in the colon. The intestinal barrier is a dynamic network of proteins that encircle intestinal epithelial cells. miRNAs regulate protein-coding genes. In this study, miR-24 was found to be elevated in colonic biopsies and blood samples from ulcerative colitis (UC) patients compared with healthy controls. In the colon of UC patients, miR-24 is localized to intestinal epithelial cells, which prompted an investigation of intestinal epithelial barrier function. Two intestinal epithelial cell lines were used to study the effect of miR-24 overexpression on barrier integrity. Overexpression of miR-24 in both cell lines led to diminished transepithelial electrical resistance and increased dextran flux, suggesting an effect on barrier integrity. Overexpression of miR-24 did not induce apoptosis or affect cell proliferation, suggesting that the effect of miR-24 on barrier function was due to an effect on cell-cell junctions. Although the tight junctions in cells overexpressing miR-24 appeared normal, miR-24 overexpression led to a decrease in the tight junction-associated protein cingulin. Loss of cingulin compromised barrier formation; cingulin levels negatively correlated with disease severity in UC patients. Together, these data suggest that miR-24 is a significant regulator of intestinal barrier that may be important in the pathogenesis of UC.


Assuntos
Permeabilidade da Membrana Celular , Colite Ulcerativa/patologia , Células Epiteliais/patologia , Intestinos/patologia , MicroRNAs/genética , Junções Íntimas/patologia , Apoptose , Proliferação de Células , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Células Epiteliais/metabolismo , Humanos , Junções Íntimas/metabolismo
19.
J Vis Exp ; (145)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30882798

RESUMO

Long noncoding RNA (lncRNA) biology is a new and exciting field of research, with the number of publications from this field growing exponentially since 2007. These studies have confirmed that lncRNAs are altered in almost all diseases. However, studying the functional roles for lncRNAs in the context of disease remains difficult due to the lack of protein products, tissue-specific expression, low expression levels, complexities in splice forms, and lack of conservation among species. Given the species-specific expression, lncRNA studies are often restricted to human research contexts when studying disease processes. Since lncRNAs function at the molecular level, one way to dissect lncRNA biology is to either remove the lncRNA or overexpress the lncRNA and measure cellular effects. In this article, a written and visualized protocol to overexpress lncRNAs in vitro is presented. As a representative experiment, an lncRNA associated with inflammatory bowel disease, Interferon Gamma Antisense 1 (IFNG-AS1), is shown to be overexpressed in a Jurkat T-cell model. To accomplish this, the activating clustered regularly interspaced short palindromic repeats (CRISPR) technique is used to enable overexpression at the endogenous genomic loci. The activating CRISPR technique targets a set of transcription factors to the transcriptional start site of a gene, enabling a robust overexpression of multiple lncRNA splice forms. This procedure will be broken down into three steps, namely (i) guide RNA (gRNA) design and vector construction, (ii) virus generation and transduction, and (iii) colony screening for overexpression. For this representative experiment, a greater than 20-fold enhancement in IFNG-AS1 in Jurkat T cells was observed.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Longo não Codificante/genética , Ativação Transcricional , Vetores Genéticos/metabolismo , Humanos , Interferon gama/genética , Células Jurkat , Linfócitos T/metabolismo
20.
Nat Microbiol ; 4(2): 269-279, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30510170

RESUMO

Clostridium difficile infection (CDI) is mediated by two major exotoxins, toxin A (TcdA) and toxin B (TcdB), that damage the colonic epithelial barrier and induce inflammatory responses. The function of the colonic vascular barrier during CDI has been relatively understudied. Here we report increased colonic vascular permeability in CDI mice and elevated vascular endothelial growth factor A (VEGF-A), which was induced in vivo by infection with TcdA- and/or TcdB-producing C. difficile strains but not with a TcdA-TcdB- isogenic mutant. TcdA or TcdB also induced the expression of VEGF-A in human colonic mucosal biopsies. Hypoxia-inducible factor signalling appeared to mediate toxin-induced VEGF production in colonocytes, which can further stimulate human intestinal microvascular endothelial cells. Both neutralization of VEGF-A and inhibition of its signalling pathway attenuated CDI in vivo. Compared to healthy controls, CDI patients had significantly higher serum VEGF-A that subsequently decreased after treatment. Our findings indicate critical roles for toxin-induced VEGF-A and colonic vascular permeability in CDI pathogenesis and may also point to the pathophysiological significance of the gut vascular barrier in response to virulence factors of enteric pathogens. As an alternative to pathogen-targeted therapy, this study may enable new host-directed therapeutic approaches for severe, refractory CDI.


Assuntos
Toxinas Bacterianas/metabolismo , Permeabilidade Capilar , Clostridioides difficile/química , Infecções por Clostridium/patologia , Enterotoxinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Virulência/metabolismo , Animais , Toxinas Bacterianas/genética , Clostridioides difficile/patogenicidade , Infecções por Clostridium/metabolismo , Colo/metabolismo , Colo/patologia , Enterotoxinas/genética , Epitélio/metabolismo , Epitélio/patologia , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Neovascularização Patológica , Transdução de Sinais , Análise de Sobrevida , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/sangue , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...