Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 14, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263015

RESUMO

BACKGROUND: The expression of aquaporin 4 (AQP4) and intermediate filament (IF) proteins is altered in malignant glioblastoma (GBM), yet the expression of the major IF-based cytolinker, plectin (PLEC), and its contribution to GBM migration and invasiveness, are unknown. Here, we assessed the contribution of plectin in affecting the distribution of plasmalemmal AQP4 aggregates, migratory properties, and regulation of cell volume in astrocytes. METHODS: In human GBM, the expression of glial fibrillary acidic protein (GFAP), AQP4 and PLEC transcripts was analyzed using publicly available datasets, and the colocalization of PLEC with AQP4 and with GFAP was determined by immunohistochemistry. We performed experiments on wild-type and plectin-deficient primary and immortalized mouse astrocytes, human astrocytes and permanent cell lines (U-251 MG and T98G) derived from a human malignant GBM. The expression of plectin isoforms in mouse astrocytes was assessed by quantitative real-time PCR. Transfection, immunolabeling and confocal microscopy were used to assess plectin-induced alterations in the distribution of the cytoskeleton, the influence of plectin and its isoforms on the abundance and size of plasmalemmal AQP4 aggregates, and the presence of plectin at the plasma membrane. The release of plectin from cells was measured by ELISA. The migration and dynamics of cell volume regulation of immortalized astrocytes were assessed by the wound-healing assay and calcein labeling, respectively. RESULTS: A positive correlation was found between plectin and AQP4 at the level of gene expression and protein localization in tumorous brain samples. Deficiency of plectin led to a decrease in the abundance and size of plasmalemmal AQP4 aggregates and altered distribution and bundling of the cytoskeleton. Astrocytes predominantly expressed P1c, P1e, and P1g plectin isoforms. The predominant plectin isoform associated with plasmalemmal AQP4 aggregates was P1c, which also affected the mobility of astrocytes most prominently. In the absence of plectin, the collective migration of astrocytes was impaired and the dynamics of cytoplasmic volume changes in peripheral cell regions decreased. Plectin's abundance on the plasma membrane surface and its release from cells were increased in the GBM cell lines. CONCLUSIONS: Plectin affects cellular properties that contribute to the pathology of GBM. The observed increase in both cell surface and released plectin levels represents a potential biomarker and therapeutic target in the diagnostics and treatment of GBMs.


Assuntos
Glioblastoma , Animais , Humanos , Camundongos , Aquaporina 4 , Astrócitos , Biomarcadores , Plectina , Isoformas de Proteínas
2.
Cells ; 12(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759529

RESUMO

Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.

3.
Cells ; 12(10)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37408194

RESUMO

A single sub-anesthetic dose of ketamine evokes rapid and long-lasting beneficial effects in patients with a major depressive disorder. However, the mechanisms underlying this effect are unknown. It has been proposed that astrocyte dysregulation of extracellular K+ concentration ([K+]o) alters neuronal excitability, thus contributing to depression. We examined how ketamine affects inwardly rectifying K+ channel Kir4.1, the principal regulator of K+ buffering and neuronal excitability in the brain. Cultured rat cortical astrocytes were transfected with plasmid-encoding fluorescently tagged Kir4.1 (Kir4.1-EGFP) to monitor the mobility of Kir4.1-EGFP vesicles at rest and after ketamine treatment (2.5 or 25 µM). Short-term (30 min) ketamine treatment reduced the mobility of Kir4.1-EGFP vesicles compared with the vehicle-treated controls (p < 0.05). Astrocyte treatment (24 h) with dbcAMP (dibutyryl cyclic adenosine 5'-monophosphate, 1 mM) or [K+]o (15 mM), which increases intracellular cAMP, mimicked the ketamine-evoked reduction of mobility. Live cell immunolabelling and patch-clamp measurements in cultured mouse astrocytes revealed that short-term ketamine treatment reduced the surface density of Kir4.1 and inhibited voltage-activated currents similar to Ba2+ (300 µM), a Kir4.1 blocker. Thus, ketamine attenuates Kir4.1 vesicle mobility, likely via a cAMP-dependent mechanism, reduces Kir4.1 surface density, and inhibits voltage-activated currents similar to Ba2+, known to block Kir4.1 channels.


Assuntos
Transtorno Depressivo Maior , Ketamina , Camundongos , Animais , Ratos , Ketamina/farmacologia , Astrócitos/metabolismo , Transtorno Depressivo Maior/metabolismo , Neurônios
4.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834929

RESUMO

Neuroinfections of the central nervous system (CNS) can be triggered by various pathogens. Viruses are the most widespread and have the potential to induce long-term neurologic symptoms with potentially lethal outcomes. In addition to directly affecting their host cells and inducing immediate changes in a plethora of cellular processes, viral infections of the CNS also trigger an intense immune response. Regulation of the innate immune response in the CNS depends not only on microglia, which are fundamental immune cells of the CNS, but also on astrocytes. These cells align blood vessels and ventricle cavities, and consequently, they are one of the first cell types to become infected after the virus breaches the CNS. Moreover, astrocytes are increasingly recognized as a potential viral reservoir in the CNS; therefore, the immune response initiated by the presence of intracellular virus particles may have a profound effect on cellular and tissue physiology and morphology. These changes should be addressed in terms of persisting infections because they may contribute to recurring neurologic sequelae. To date, infections of astrocytes with different viruses originating from genetically distinct families, including Flaviviridae, Coronaviridae, Retroviridae, Togaviridae, Paramyxoviridae, Picomaviridae, Rhabdoviridae, and Herpesviridae, have been confirmed. Astrocytes express a plethora of receptors that detect viral particles and trigger signaling cascades, leading to an innate immune response. In this review, we summarize the current knowledge on virus receptors that initiate the release of inflammatory cytokines from astrocytes and depict the involvement of astrocytes in immune functions of the CNS.


Assuntos
Doenças Transmissíveis , Doenças do Sistema Nervoso , Vírus , Humanos , Astrócitos/metabolismo , Sistema Nervoso Central , Citocinas/metabolismo , Microglia , Doenças Transmissíveis/metabolismo , Imunidade Inata , Doenças do Sistema Nervoso/metabolismo
5.
Cell Mol Life Sci ; 79(11): 566, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36283999

RESUMO

Astrocytes, an abundant type of glial cells, are the key cells providing homeostasis in the central nervous system. Due to their susceptibility to infection, combined with high resilience to virus-induced cell death, astrocytes are now considered one of the principal types of cells, responsible for virus retention and dissemination within the brain. Autophagy plays an important role in elimination of intracellular components and in maintaining cellular homeostasis and is also intertwined with the life cycle of viruses. The physiological significance of autophagy in astrocytes, in connection with the life cycle and transmission of viruses, remains poorly investigated. In the present study, we investigated flavivirus-induced modulation of autophagy in human astrocytes by monitoring a tandem fluorescent-tagged LC3 probe (mRFP-EGFP-LC3) with confocal and super-resolution fluorescence microscopy. Astrocytes were infected with tick-borne encephalitis virus (TBEV) or West Nile virus (WNV), both pathogenic flaviviruses, and with mosquito-only flavivirus (MOF), which is considered non-pathogenic. The results revealed that human astrocytes are susceptible to infection with TBEV, WNV and to a much lower extent also to MOF. Infection and replication rates of TBEV and WNV are paralleled by increased rate of autophagy, whereas autophagosome maturation and the size of autophagic compartments are not affected. Modulation of autophagy by rapamycin and wortmannin does not influence TBEV and WNV replication rate, whereas bafilomycin A1 attenuates their replication and infectivity. In human astrocytes infected with MOF, the low infectivity and the lack of efficient replication of this flavivirus are mirrored by the absence of an autophagic response.


Assuntos
Astrócitos , Vírus da Encefalite Transmitidos por Carrapatos , Animais , Humanos , Astrócitos/metabolismo , Wortmanina/metabolismo , Autofagia , Sirolimo , Replicação Viral
6.
Cells ; 10(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572001

RESUMO

Plectin, a high-molecular-mass cytolinker, is abundantly expressed in the central nervous system (CNS). Currently, a limited amount of data about plectin in the CNS prevents us from seeing the complete picture of how plectin affects the functioning of the CNS as a whole. Yet, by analogy to its role in other tissues, it is anticipated that, in the CNS, plectin also functions as the key cytoskeleton interlinking molecule. Thus, it is likely involved in signalling processes, thereby affecting numerous fundamental functions in the brain and spinal cord. Versatile direct and indirect interactions of plectin with cytoskeletal filaments and enzymes in the cells of the CNS in normal physiological and in pathologic conditions remain to be fully addressed. Several pathologies of the CNS related to plectin have been discovered in patients with plectinopathies. However, in view of plectin as an integrator of a cohesive mesh of cellular proteins, it is important that the role of plectin is also considered in other CNS pathologies. This review summarizes the current knowledge of plectin in the CNS, focusing on plectin isoforms that have been detected in the CNS, along with its expression profile and distribution alongside diverse cytoskeleton filaments in CNS cell types. Considering that the bidirectional communication between neurons and glial cells, especially astrocytes, is crucial for proper functioning of the CNS, we place particular emphasis on the known roles of plectin in neurons, and we propose possible roles of plectin in astrocytes.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Plectina/metabolismo , Animais , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo
7.
Front Cell Neurosci ; 15: 662578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897376

RESUMO

At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.

8.
Metabolism ; 116: 154463, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309713

RESUMO

OBJECTIVES: GDI1 gene encodes for αGDI, a protein controlling the cycling of small GTPases, reputed to orchestrate vesicle trafficking. Mutations in human GDI1 are responsible for intellectual disability (ID). In mice with ablated Gdi1, a model of ID, impaired working and associative short-term memory was recorded. This cognitive phenotype worsens if the deletion of αGDI expression is restricted to neurons. However, whether astrocytes, key homeostasis providing neuroglial cells, supporting neurons via aerobic glycolysis, contribute to this cognitive impairment is unclear. METHODS: We carried out proteomic analysis and monitored [18F]-fluoro-2-deoxy-d-glucose uptake into brain slices of Gdi1 knockout and wild type control mice. d-Glucose utilization at single astrocyte level was measured by the Förster Resonance Energy Transfer (FRET)-based measurements of cytosolic cyclic AMP, d-glucose and L-lactate, evoked by agonists selective for noradrenaline and L-lactate receptors. To test the role of astrocyte-resident processes in disease phenotype, we generated an inducible Gdi1 knockout mouse carrying the Gdi1 deletion only in adult astrocytes and conducted behavioural tests. RESULTS: Proteomic analysis revealed significant changes in astrocyte-resident glycolytic enzymes. Imaging [18F]-fluoro-2-deoxy-d-glucose revealed an increased d-glucose uptake in Gdi1 knockout tissue versus wild type control mice, consistent with the facilitated d-glucose uptake determined by FRET measurements. In mice with Gdi1 deletion restricted to astrocytes, a selective and significant impairment in working memory was recorded, which was rescued by inhibiting glycolysis by 2-deoxy-d-glucose injection. CONCLUSIONS: These results reveal a new astrocyte-based mechanism in neurodevelopmental disorders and open a novel therapeutic opportunity of targeting aerobic glycolysis, advocating a change in clinical practice.


Assuntos
Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Transtornos da Memória/prevenção & controle , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Desoxiglucose/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Glucose/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/deficiência , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Transtornos da Memória/genética , Camundongos , Camundongos Knockout
9.
Methods Mol Biol ; 2233: 93-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33222129

RESUMO

Endocytosis is a vesicle-based mechanism by which eukaryotic cells internalize extracellular material. There are several types of this universal mechanism linked to different types of endocytosed cargo, including pathogens; therefore, several approaches can be applied. Here, we describe techniques that are applicable to study the internalization of flaviviruses; dextrans; transporters, such as, glutamate transporter vGlut1; and peptidergic signaling molecules, including atrial natriuretic peptide into astrocytes, the most heterogeneous neuroglial cells, which play a key homeostatic role in the central nervous system.


Assuntos
Fator Natriurético Atrial/genética , Endocitose/genética , Biologia Molecular/métodos , Transporte Proteico/genética , Astrócitos/metabolismo , Astrócitos/microbiologia , Astrócitos/virologia , Fator Natriurético Atrial/farmacologia , Cálcio/metabolismo , Flavivirus/efeitos dos fármacos , Humanos , Organelas/genética , Organelas/metabolismo , Organelas/virologia , Internalização do Vírus/efeitos dos fármacos
10.
Cells ; 9(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297299

RESUMO

Aquaporin 4 (AQP4) is the most abundant water channel in the central nervous system (CNS). Its expression is confined to non-neuronal glial cells, predominantly to astrocytes that represent a heterogeneous glial cell type in the CNS. The membrane of astrocyte processes, which align brain capillaries and pia, is particularly rich in AQP4. Several isoforms of AQP4 have been described; however, only some (AQP4a (M1), AQP4 c (M23), AQP4e, and AQP4ex) have been identified in the plasma membrane assemblies of astrocytes termed orthogonal arrays of particles (OAPs). Intracellular splicing isoforms (AQP4b, AQP4d, AQP4f, AQP4-Δ4) have been documented, and most of them are postulated to have a role in the cell surface distribution of the plasma membrane isoforms and in the formation of OAPs in murine and human astrocytes. Although OAPs have been proposed to play various roles in the functioning of astrocytes and CNS tissue as a whole, many of these still need to be described. OAPs are studied primarily from the perspective of understanding water permeability regulation through the plasma membrane and of their involvement in cell adhesion and in the dynamics of astrocytic processes. This review describes the cellular distribution of various AQP4 isoforms and their implications in OAP assembly, which is regulated by several intracellular and extracellular proteins.


Assuntos
Aquaporina 4/química , Aquaporina 4/fisiologia , Astrócitos/metabolismo , Membrana Celular/metabolismo , Agrina/metabolismo , Processamento Alternativo , Animais , Arginina Vasopressina/metabolismo , Astrócitos/citologia , Neoplasias Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Adesão Celular , Movimento Celular , Distroglicanas/metabolismo , Estradiol/metabolismo , Matriz Extracelular/metabolismo , Glioma/metabolismo , Humanos , Laminina/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Musculares/metabolismo , Neuroglia/metabolismo , Permeabilidade , Progesterona/metabolismo , Isoformas de Proteínas , Ratos , Água/química
11.
Cells ; 9(7)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630739

RESUMO

Despite the remarkable complexity of the individual neuron and of neuronal circuits, it has been clear for quite a while that, in order to understand the functioning of the brain, the contribution of other cell types in the brain have to be accounted for. Among glial cells, astrocytes have multiple roles in orchestrating neuronal functions. Their communication with neurons by exchanging signaling molecules and removing molecules from extracellular space takes place at several levels and is governed by different cellular processes, supported by multiple cellular structures, including the cytoskeleton. Intermediate filaments in astrocytes are emerging as important integrators of cellular processes. Astrocytes express five types of intermediate filaments: glial fibrillary acidic protein (GFAP); vimentin; nestin; synemin; lamins. Variability, interactions with different cellular structures and the particular roles of individual intermediate filaments in astrocytes have been studied extensively in the case of GFAP and vimentin, but far less attention has been given to nestin, synemin and lamins. Similarly, the interplay between different types of cytoskeleton and the interaction between the cytoskeleton and membranous structures, which is mediated by cytolinker proteins, are understudied in astrocytes. The present review summarizes the basic properties of astrocytic intermediate filaments and of other cytoskeletal macromolecules, such as cytolinker proteins, and describes the current knowledge of their roles in normal physiological and pathological conditions.


Assuntos
Astrócitos/metabolismo , Filamentos Intermediários/metabolismo , Animais , Astrócitos/ultraestrutura , Humanos , Proteínas de Filamentos Intermediários/química , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura
12.
Cells ; 9(3)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192013

RESUMO

Water channel aquaporin 4 (AQP4) plays a key role in the regulation of water homeostasis in the central nervous system (CNS). It is predominantly expressed in astrocytes lining blood-brain and blood-liquor boundaries. AQP4a (M1), AQP4c (M23), and AQP4e, present in the plasma membrane, participate in the cell volume regulation of astrocytes. The function of their splicing variants, AQP4b and AQP4d, predicted to be present in the cytoplasm, is unknown. We examined the cellular distribution of AQP4b and AQP4d in primary rat astrocytes and their role in cell volume regulation. The AQP4b and AQP4d isoforms exhibited extensive cytoplasmic localization in early and late endosomes/lysosomes and in the Golgi apparatus. Neither isoform localized to orthogonal arrays of particles (OAPs) in the plasma membrane. The overexpression of AQP4b and AQP4d isoforms in isoosmotic conditions reduced the density of OAPs; in hypoosmotic conditions, they remained absent from OAPs. In hypoosmotic conditions, the AQP4d isoform was significantly redistributed to early endosomes, which correlated with the increased trafficking of AQP4-laden vesicles. The overexpression of AQP4d facilitated the kinetics of cell swelling, without affecting the regulatory volume decrease. Therefore, although they reside in the cytoplasm, AQP4b and AQP4d isoforms may play an indirect role in astrocyte volume changes.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Animais , Astrócitos/patologia , Tamanho Celular , Feminino , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia , Ratos Wistar
13.
Sci Rep ; 9(1): 8069, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147629

RESUMO

Malformations of the fetal CNS, known as microcephaly, have been linked to Zika virus (ZIKV) infection. Here, the responses of mammalian and mosquito cell lines, in addition to primary human fetal astrocytes and neurons were studied following infection by ZIKV strains Brazil 2016 (ZIKV-BR), French Polynesia 2013 (ZIKV-FP), and Uganda #976 1947 (ZIKV-UG). Viral production, cell viability, infectivity rate, and mobility of endocytotic ZIKV-laden vesicles were compared. All cell types (SK-N-SH, Vero E6, C6/36, human fetal astrocytes and human fetal neurons) released productive virus. Among primary cells, astrocytes were more susceptible to ZIKV infection than neurons, released more progeny virus and tolerated higher virus loads than neurons. In general, the infection rate of ZIKV-UG strain was the highest. All ZIKV strains elicited differences in trafficking of ZIKV-laden endocytotic vesicles in the majority of cell types, including astrocytes and neurons, except in mosquito cells, where ZIKV infection failed to induce cell death. These results represent a thorough screening of cell viability, infection and production of three ZIKV strains in five different cell types and demonstrate that ZIKV affects vesicle mobility in all but mosquito cells.


Assuntos
Astrócitos/patologia , Microcefalia/patologia , Neurônios/patologia , Infecção por Zika virus/complicações , Zika virus/patogenicidade , Aedes , Animais , Astrócitos/virologia , Linhagem Celular Tumoral , Sobrevivência Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Chlorocebus aethiops , Endocitose , Endossomos/metabolismo , Endossomos/virologia , Desenvolvimento Fetal , Feto/citologia , Humanos , Microscopia Intravital , Microcefalia/virologia , Microscopia Confocal , Neurônios/virologia , Cultura Primária de Células , Células Vero , Infecção por Zika virus/virologia
14.
Int J Mol Sci ; 20(3)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736273

RESUMO

Virus infections of the central nervous system (CNS) can manifest in various forms of inflammation, including that of the brain (encephalitis) and spinal cord (myelitis), all of which may have long-lasting deleterious consequences. Although the knowledge of how different viruses affect neural cells is increasing, understanding of the mechanisms by which cells respond to neurotropic viruses remains fragmented. Several virus types have the ability to infect neural tissue, and astrocytes, an abundant and heterogeneous neuroglial cell type and a key element providing CNS homeostasis, are one of the first CNS cell types to get infected. Astrocytes are morphologically closely aligned with neuronal synapses, blood vessels, and ventricle cavities, and thereby have the capacity to functionally interact with neurons and endothelial cells. In this review, we focus on the responses of astrocytes to infection by neurotropic flaviviruses, including tick-borne encephalitis virus (TBEV), Zika virus (ZIKV), West Nile virus (WNV), and Japanese encephalitis virus (JEV), which have all been confirmed to infect astrocytes and cause multiple CNS defects. Understanding these mechanisms may help design new strategies to better contain and mitigate virus- and astrocyte-dependent neuroinflammation.


Assuntos
Astrócitos/metabolismo , Astrócitos/virologia , Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Animais , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Infecções por Flavivirus/patologia , Infecções por Flavivirus/transmissão , Humanos , Tropismo Viral , Febre do Nilo Ocidental/metabolismo , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia
15.
J Neurosci ; 37(44): 10748-10756, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978666

RESUMO

Water channel aquaporin 4 (AQP4) plays a key role in the regulation of water homeostasis in the brain. It is predominantly expressed in astrocytes at the blood-brain and blood-liquor interfaces. Although several AQP4 isoforms have been identified in the mammalian brain, two, AQP4a (M1) and AQP4c (M23), have been confirmed to cluster into plasma membrane supramolecular structures, termed orthogonal arrays of particles (OAPs) and to enhance water transport through the plasma membrane. However, the role of the newly described water-conductive mammalian isoform AQP4e is unknown. Here, the dynamics of AQP4e aggregation into OAPs and its role in the regulation of astrocyte water homeostasis have been studied. Using super-resolution structured illumination, atomic force, and confocal microscopies, the results revealed that, in female rat astrocytes, AQP4e isoform colocalizes with OAPs, affecting its structural dynamics. In hypoosmotic conditions, which elicit cell edema, OAP formation was considerably enhanced by overexpressed AQP4e. Moreover, the kinetics of the cell swelling and of the regulatory volume decrease was faster in astrocytes overexpressing AQP4e compared with untransfected controls. Furthermore, the increase in maximal cell volume elicited by hypoosmotic stimulation was significantly smaller in AQP4e-overexpressing astrocytes. For the first time, this study demonstrates an active role of AQP4e in the regulation of OAP structural dynamics and in water homeostasis.SIGNIFICANCE STATEMENT Water channel aquaporin 4 (AQP4) plays a key role in the regulation of water homeostasis in the brain. To date, only AQP4a and AQP4c isoforms have been confirmed to enhance water transport through plasmalemma and to cluster into orthogonal arrays of particles (OAPs). We here studied the dynamics, aggregation, and role in the regulation of astrocyte water homeostasis of the newly described water-conductive mammalian isoform AQP4e. Our main findings are as follows: brain edema mimicking hypoosmotic conditions stimulates the formation of new OAPs with larger diameters, due to the incorporation of additional cytoplasmic AQP4 channels and the redistribution of AQP4 channels of the existing OAPs; and AQP4e affects the dynamics of cell swelling and regulatory volume decrease in astrocytes exposed to hypoosmotic conditions.


Assuntos
Aquaporina 4/biossíntese , Astrócitos/metabolismo , Tamanho Celular , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Feminino , Concentração Osmolar , Isoformas de Proteínas/biossíntese , Ratos , Ratos Wistar , Fatores de Tempo
16.
J Neurosci Res ; 95(11): 2152-2158, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28370180

RESUMO

Astrocytes are excitable neural cells that contribute to brain information processing via bidirectional communication with neurons. This involves the release of gliosignaling molecules that affect synapses patterning and activity. Mechanisms mediating the release of these molecules likely consist of non-vesicular and vesicular-based mechanisms. It is the vesicle-based regulated exocytosis that is an evolutionary more complex process. It is well established that the release of gliosignaling molecules has profound effects on information processing in different brain regions (e.g., hippocampal astrocytes contribute to long-term potentiation [LTP]), which has traditionally been considered as one of the cellular mechanisms underlying learning and memory. However, the paradigm of vesicle-based regulated release of gliosignaling molecules from astrocytes is still far from being unanimously accepted. One of the most important questions is to what extent can the conclusions obtained from cultured astrocytes be translated to in vivo conditions. Here, we overview the properties of vesicle mobility and their fusion with the plasma membrane in cultured astrocytes and compare these parameters to those recorded in astrocytes from acute brain hippocampal slices. The results from both experimental models are similar, which validates experiments on isolated astrocytes and further supports arguments in favor of in vivo vesicle-based exocytotic release of gliosignaling molecules. © 2017 Wiley Periodicals, Inc.


Assuntos
Astrócitos/metabolismo , Exocitose/fisiologia , Hipocampo/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Hipocampo/citologia , Potenciação de Longa Duração/fisiologia , Técnicas de Cultura de Órgãos , Roedores , Vesículas Sinápticas/metabolismo
17.
Mol Neurobiol ; 54(4): 2458-2468, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26971292

RESUMO

X-linked non-syndromic intellectual disability (XLID) is a common mental disorder recognized by cognitive and behavioral deficits. Mutations in the brain-specific αGDI, shown to alter a subset of RAB GTPases redistribution in cells, are linked to XLID, likely via changes in vesicle traffic in neurons. Here, we show directly that isolated XLID mice astrocytes, devoid of pathologic tissue environment, exhibit vesicle mobility deficits. Contrary to previous studies, we show that astrocytes express two GDI proteins. The siRNA-mediated suppression of expression of αGDI especially affected vesicle dynamics. A similar defect was recorded in astrocytes from the Gdi1 -/Y mouse model of XLID and in astrocytes with recombinant mutated human XLID αGDI. Endolysosomal vesicles studied here are involved in the release of gliosignaling molecules as well as in regulating membrane receptor density; thus, the observed changes in astrocytic vesicle mobility may, over the long time-course, profoundly affect signaling capacity of these cells, which optimize neural activity.


Assuntos
Astrócitos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Genes Ligados ao Cromossomo X , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Animais , Astrócitos/patologia , Modelos Animais de Doenças , Endossomos/metabolismo , Inativação Gênica , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Mutação/genética , Ratos , Transfecção
18.
Int J Mol Sci ; 17(7)2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27420057

RESUMO

The family of aquaporins (AQPs), membrane water channels, consists of diverse types of proteins that are mainly permeable to water; some are also permeable to small solutes, such as glycerol and urea. They have been identified in a wide range of organisms, from microbes to vertebrates and plants, and are expressed in various tissues. Here, we focus on AQP types and their isoforms in astrocytes, a major glial cell type in the central nervous system (CNS). Astrocytes have anatomical contact with the microvasculature, pia, and neurons. Of the many roles that astrocytes have in the CNS, they are key in maintaining water homeostasis. The processes involved in this regulation have been investigated intensively, in particular regulation of the permeability and expression patterns of different AQP types in astrocytes. Three aquaporin types have been described in astrocytes: aquaporins AQP1 and AQP4 and aquaglyceroporin AQP9. The aim here is to review their isoforms, subcellular localization, permeability regulation, and expression patterns in the CNS. In the human CNS, AQP4 is expressed in normal physiological and pathological conditions, but astrocytic expression of AQP1 and AQP9 is mainly associated with a pathological state.


Assuntos
Aquaporina 4/química , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encefalopatias/metabolismo , Animais , Astrócitos/citologia , Encefalopatias/patologia , Humanos , Simulação de Dinâmica Molecular
19.
J Neurosci ; 34(47): 15638-47, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411492

RESUMO

Hormone and neurotransmitter release from vesicles is mediated by regulated exocytosis, where an aqueous channel-like structure, termed a fusion pore, is formed. It was recently shown that second messenger cAMP modulates the fusion pore, but the detailed mechanisms remain elusive. In this study, we asked whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are activated by cAMP, are involved in the regulation of unitary exocytic events. By using the Western blot technique, a real-time PCR, immunocytochemistry in combination with confocal microscopy, and voltage-clamp measurements of hyperpolarizing currents, we show that HCN channels are present in the plasma membrane and in the membrane of secretory vesicles of isolated rat lactotrophs. Single vesicle membrane capacitance measurements of lactotrophs, where HCN channels were either augmented by transfection or blocked with an HCN channel blocker (ZD7288), show modulated fusion pore properties. We suggest that the changes in local cation concentration, mediated through HCN channels, which are located on or near secretory vesicles, have an important role in modulating exocytosis.


Assuntos
AMP Cíclico/fisiologia , Exocitose/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/efeitos dos fármacos , Lactotrofos/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Masculino , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio/fisiologia , Ratos , Ratos Wistar
20.
Nat Commun ; 5: 3780, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24807050

RESUMO

Exocytic transmitter release is regulated by the SNARE complex, which contains a vesicular protein, synaptobrevin2 (Sb2). However, Sb2 vesicular arrangement is unclear. Here we use super-resolution fluorescence microscopy to study the prevalence and distribution of endogenous and exogenous Sb2 in single vesicles of astrocytes, the most abundant glial cells in the brain. We tag Sb2 protein at C- and N termini with a pair of fluorophores, which allows us to determine the Sb2 length and geometry. To estimate total number of Sb2 proteins per vesicle and the quantity necessary for the formation of fusion pores, we treat cells with ATP to stimulate Ca2+-dependent exocytosis, increase intracellular alkalinity to enhance the fluorescence presentation of yellow-shifted pHluorin (YpH), appended to the vesicle lumen domain of Sb2, and perform photobleaching of YpH fluorophores. Fluorescence intensity analysis reveals that the total number of endogenous Sb2 units or molecules per vesicle is ≤25.


Assuntos
Astrócitos/fisiologia , Encéfalo/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Encéfalo/citologia , Células Cultivadas , Exocitose/fisiologia , Feminino , Proteínas de Fluorescência Verde , Fusão de Membrana , Microscopia de Fluorescência , Fotodegradação , Ratos , Proteínas SNARE/metabolismo , Vesículas Transportadoras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...