Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Announc ; 6(26)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954905

RESUMO

We report here the 3.6-Mb draft genome of Bacillus altitudinis Lc5, a potential plant growth promoter and an active antagonistic endophyte of black rice. This genome study will provide better insights into the strain's mechanisms for plant growth promotion and biocontrol, thus facilitating its application in organic agriculture.

2.
Bioresour Technol ; 241: 1168-1172, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28578806

RESUMO

In this study, fungi isolated from less explored forest soil ecosystem of Northeast India were studied for the production of potential antimicrobial metabolites (AMM). Out of the 68 fungi isolated from forest soil of Manipur, 7 of them showed AMA against the test pathogens. Among them, Aspergillus terreus (IBSD-F4) showed the most significant activity against Staphylococcus aureus (ATCC-25923), Bacillus anthracis (IBSD-C370), Pseudomonas fluorescens (ATCC-13525), Salmonella typhimurium (ATCC-14028), Escherichia coli (ATCC-25922) and Candida albicans (ATCC-10231). The active metabolite was harvested from the fermentation broth of Aspergillus terreus and purified by column chromatography and semi preparative-HPLC. The compound was identified as 'Sclerotionigrin A' on the basis of UV-vis spectra, MS and NMR analyses. This compound was reported for the first time from A. terreus. The study highlights, the importance of exploring microbes from forest soil for identification of bioactive metabolites for future drug development.


Assuntos
Anti-Infecciosos , Ecossistema , Florestas , Staphylococcus aureus , Fermentação , Fungos , Índia , Testes de Sensibilidade Microbiana , Mineração , Solo
3.
Front Microbiol ; 8: 325, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303127

RESUMO

In a natural ecosystem, the plant is in a symbiotic relationship with beneficial endophytes contributing huge impact on its host plant. Therefore, exploring beneficial endophytes and understanding its interaction is a prospective area of research. The present work aims to characterize the fungal endophytic communities associated with healthy maize and rice plants and to study the deterministic factors influencing plant growth and biocontrol properties against phytopathogens, viz, Pythium ultimum, Sclerotium oryzae, Rhizoctonia solani, and Pyricularia oryzae. A total of 123 endophytic fungi was isolated using the culture-dependent approach from different tissue parts of the plant. Most dominating fungal endophyte associated with both the crops belong to genus Fusarium, Sarocladium, Aspergillus, and Penicillium and their occurrence was not tissue specific. The isolates were screened for in vitro plant growth promotion, stress tolerance, disease suppressive mechanisms and based on the results, each culture from both the cereal crops was selected for further study. Acremonium sp. (ENF 31) and Penicillium simplicisssum (ENF22), isolated from maize and rice respectively could potentially inhibit the growth of all the tested pathogens with 46.47 ± 0.16 mm to 60.09 ± 0.04 mm range zone of inhibition for ENF31 and 35.48 ± 0.14 to 62.29 ± 0.15 mm for ENF22. Both significantly produce the defensive enzymes, ENF31 could tolerate a wide range of pH from 2 to 12, very important criteria, for studying plant growth in different soil types, especially acidic as it is widely prevalent here, making more land unsuitable for cultivation. ENF22 grows in pH range 3-12, with 10% salt tolerating ability, another factor of consideration. Study of root colonization during 7th to 30th days of growth phase reveals that ENF31 could colonize pleasantly in rice, though a maize origin, ranging from 1.02 to 1.21 log10 CFU/g root and in maize, it steadily colonizes ranging from 0.95 to 1.18 log10 CFU, while ENF22 could colonize from 0.98 to 1.24 Log10CFU/g root in rice and 1.01 to 1.24Log10CFU/g root in maize, just the reverse observed in Acremonium sp. Therefore, both the organism has the potency of a promising Bio-resource agent, that we must definitely explore to fill the gap in the agriculture industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...