Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cyst Fibros ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38763840

RESUMO

BACKGROUND: Patient-derived intestinal organoids (PDIOs) show great potential as in vitro drug testing platform for personalised medicine in Cystic Fibrosis and oncology. PDIOs can be generated by culturing adult stem cells obtained through rectal forceps biopsy or suction biopsy, but the safety of these procedures and the success rates of generating organoids after shipment to a centralized lab using these procedures has not been studied in this context. We here report the safety and success rates of both biopsy procedures and the subsequent generation of PDIOs in the international multicentre HIT-CF Organoid Study. METHODS: 502 biopsy procedures were conducted, on 489 adult people with Cystic Fibrosis from 33 different hospitals across 12 countries. Depending on the preference of the hospital, either rectal forceps biopsies or suction biopsies were obtained and internationally shipped to a central laboratory for organoid generation. RESULTS: No adverse events were reported for 280 forceps biopsy procedures, while 222 rectal suction biopsy procedures resulted in 2 adverse events, namely continued bleeding and a probably nonrelated gastroenteritis. The success rate of organoid generation from all biopsies was 95%, and the main reason for failure was insufficient sample viability (3.2%). CONCLUSION: Our results indicate that both rectal suction biopsy and forceps biopsy procedures are safe procedures. The high success rates of PDIO generation from the obtained tissue samples demonstrate the feasibility of the organoid technology for personalised in vitro testing in an international setting.

2.
J Cyst Fibros ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38749892

RESUMO

BACKGROUND: The forskolin-induced swelling (FIS) assay measures CFTR function on patient-derived intestinal organoids (PDIOs) and may guide treatment selection for individuals with Cystic Fibrosis (CF). The aim of this study is to demonstrate the repeatability and reproducibility of the FIS assay following a detailed Standard Operating Procedure (SOP), thus advancing the validation of the assay for precision medicine (theranostic) applications. METHODS: Over a 2-year period, FIS responses to CFTR modulators were measured in four European labs. PDIOs from six subjects with CF carrying different CFTR genotypes were used to assess the repeatability and reproducibility across the dynamic range of the assay. RESULTS: Technical, intra-assay repeatability was high (Lin's concordance correlation coefficient (CCC) 0.95-0.98). Experimental, within-subject repeatability was also high within each lab (CCCs all >0.9). Longer-term repeatability (>1 year) showed more variability (CCCs from 0.67 to 0.95). The reproducibility between labs was also high (CCC ranging from 0.92 to 0.97). Exploratory analysis also found that between-lab percentage of agreement of dichotomized CFTR modulator outcomes for predefined FIS thresholds ranged between 78 and 100 %. CONCLUSIONS: The observed repeatability and reproducibility of the FIS assay within and across different labs is high and support the use of FIS as biomarker of CFTR function in the presence or absence of CFTR modulators.

3.
Inflamm Bowel Dis ; 29(2): 195-206, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356046

RESUMO

BACKGROUND: Patient-derived organoid (PDO) models offer potential to transform drug discovery for inflammatory bowel disease (IBD) but are limited by inconsistencies with differentiation and functional characterization. We profiled molecular and cellular features across a range of intestinal organoid models and examined differentiation and establishment of a functional epithelial barrier. METHODS: Patient-derived organoids or monolayers were generated from control or IBD patient-derived colon or ileum and were molecularly or functionally profiled. Biological or technical replicates were examined for transcriptional responses under conditions of expansion or differentiation. Cell-type composition was determined by deconvolution of cell-associated gene signatures and histological features. Differentiated control or IBD-derived monolayers were examined for establishment of transepithelial electrical resistance (TEER), loss of barrier integrity in response to a cocktail of interferon (IFN)-γ and tumor necrosis factor (TNF)-α, and prevention of cytokine-induced barrier disruption by the JAK inhibitor, tofacitinib. RESULTS: In response to differentiation media, intestinal organoids and monolayers displayed gene expression patterns consistent with maturation of epithelial cell types found in the human gut. Upon differentiation, both colon- and ileum-derived monolayers formed functional barriers, with sustained TEER. Barrier integrity was compromised by inflammatory cytokines IFN-γ and TNF-α, and damage was inhibited in a dose-dependent manner by tofacitinib. CONCLUSIONS: We describe the generation and characterization of human colonic or ileal organoid models capable of functional differentiation to mature epithelial cell types. In monolayer culture, these cells formed a robust epithelial barrier with sustained TEER and responses to pharmacological modulation. Our findings demonstrate that control and IBD patient-derived organoids possess consistent transcriptional and functional profiles that can enable development of epithelial-targeted therapies.


Assuntos
Doenças Inflamatórias Intestinais , Intestinos , Organoides , Humanos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Organoides/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Intestinos/fisiologia
4.
J Cyst Fibros ; 20(3): 436-442, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33558100

RESUMO

BACKGROUND: Promoting full-length protein production is a requisite step to address some of the remaining unmet medical need for those with Cystic Fibrosis (CF) nonsense alleles. ELX-02 promotes read-through of mRNA transcripts bearing nonsense mutations, including the most common CF nonsense allele G542X, in several different preclinical models including human bronchial epithelial cells. Here we evaluate ELX-02 mediated read-through using the CFTR-dependent Forskolin-induced swelling (FIS) assay across a selection of G542X genotype patient derived organoids (PDOs). METHODS: CFTR functional restoration was evaluated in ELX-02 treated G542X homozygous and heterozygous PDOs in the CFTR-dependent FIS assay. CFTR mRNA abundance and integrity were evaluated by qPCR and Nanostring analysis while PDO protein was detected by capillary based size-exclusion chromatography. RESULTS: PDOs homozygous for G542X or heterozygous with a second minimally functional allele had significantly increased CFTR activity with ELX-02 in a dose-dependent fashion across a variety of forskolin induction concentrations. The functional increases are similar to those obtained with tezacaftor/ivacaftor in F508del homozygous PDOs. Increased CFTR C- and B-band protein was observed in accordance with increased function. In addition, ELX-02 treatment of a G542X/G542X PDO results in a 5-fold increase in CFTR mRNA compared with vehicle treated, resulting in normalization of CFTR mRNA as measured via Nanostring. CONCLUSIONS: These data with ELX-02 in PDOs are consistent with previous G542X model evaluations. These results also support the on-going clinical evaluation of ELX-02 as a read-through agent for CF caused by the G542X allele.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Furanos/farmacologia , Intestinos/metabolismo , Organoides/metabolismo , Alelos , Células Cultivadas , Códon sem Sentido , Genótipo , Humanos
5.
Immunology ; 162(4): 357-367, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32966619

RESUMO

Intestinal epithelial cells (IECs) constitute the border between the vast antigen load present in the intestinal lumen and the mucosal immune compartment. Their ability to express antigen processing and presentation machinery evokes the question whether IECs function as non-conventional antigen-presenting cells. Major histocompatibility complex (MHC) class II expression by non-haematopoietic cells, such as IECs, is tightly regulated by the class II transactivator (CIITA) and is classically induced by IFN-γ. As MHC class II expression by IECs is upregulated under inflammatory conditions, it has been proposed to activate effector CD4+ T (Teff) cells. However, other studies have reported contradictory results and instead suggested a suppressive role of antigen presentation by IECs, through regulatory T (Treg)-cell activation. Recent studies investigating the role of MHC class II + exosomes released by IECs also reported conflicting findings of either immune enhancing or immunosuppressive activities. Moreover, in addition to modulating inflammatory responses, recent findings suggest that MHC class II expression by intestinal stem cells may elicit crosstalk that promotes epithelial renewal. A more complete understanding of the different consequences of IEC MHC class II antigen presentation will guide future efforts to modulate this pathway to selectively invoke protective immunity while maintaining tolerance to beneficial antigens.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Epiteliais/metabolismo , Exossomos/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Mucosa Intestinal/imunologia , Animais , Apresentação de Antígeno , Células Epiteliais/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Tolerância Imunológica , Ativação Linfocitária
6.
Autophagy ; 14(8): 1460-1461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29799774

RESUMO

Genome-wide association studies (GWAS) linking polymorphisms in ATG16L1 with susceptibility to inflammatory bowel disease (IBD) have prompted mucosal immunologists to investigate the functional roles of macroautophagy/autophagy in different cell types in the gut. Here we present a recent study that addressed 2 key questions: in which cell type is autophagy deficiency most detrimental during chronic colitis and what is the functional role of autophagy in those cells? We report that autophagy in intestinal epithelial cells (IECs) acts to limit intestinal inflammation by protecting them from TNF-induced apoptosis and we discuss the potential implications for IBD treatment.


Assuntos
Autofagia , Colite , Animais , Apoptose , Células Epiteliais , Estudo de Associação Genômica Ampla , Camundongos
7.
Cell Host Microbe ; 23(2): 191-202.e4, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29358084

RESUMO

Genome-wide association studies have linked polymorphisms in the autophagy gene ATG16L1 with susceptibility to inflammatory bowel disease (IBD). However, the cell-type-specific effects of autophagy on the regulation of chronic intestinal inflammation have not been investigated. Here, we assessed the effect of myeloid-specific or intestinal epithelial cell (IEC)-specific deletion of Atg16l1 on chronic colitis triggered by the intestinal opportunistic pathogen Helicobacter hepaticus in mice. Although Atg16l1 deficiency in myeloid cells had little effect on disease, mice selectively lacking Atg16l1 in IECs (Atg16l1VC) developed severely exacerbated pathology, accompanied by elevated pro-inflammatory cytokine secretion and increased IEC apoptosis. Using ex vivo IEC organoids, we demonstrate that autophagy intrinsically controls TNF-induced apoptosis and in vivo blockade of TNF attenuated the exacerbated pathology in Atg16l1VC mice. These findings suggest that the IBD susceptibility gene ATG16L1 and the process of autophagy within the epithelium control inflammation-induced apoptosis and barrier integrity to limit chronic intestinal inflammation.


Assuntos
Apoptose/imunologia , Autofagia/imunologia , Proteínas de Transporte/genética , Colite/imunologia , Células Caliciformes/imunologia , Celulas de Paneth/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/genética , Autofagia/genética , Proteínas Relacionadas à Autofagia , Linhagem Celular , Citrobacter rodentium/patogenicidade , Células HEK293 , Helicobacter hepaticus/patogenicidade , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia
9.
Nat Med ; 23(5): 579-589, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28368383

RESUMO

Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumor necrosis factor-α (TNF) antibodies are mainstay therapies for IBD. However, up to 40% of patients are nonresponsive to anti-TNF agents, which makes the identification of alternative therapeutic targets a priority. Here we show that, relative to healthy controls, inflamed intestinal tissues from patients with IBD express high amounts of the cytokine oncostatin M (OSM) and its receptor (OSMR), which correlate closely with histopathological disease severity. The OSMR is expressed in nonhematopoietic, nonepithelial intestinal stromal cells, which respond to OSM by producing various proinflammatory molecules, including interleukin (IL)-6, the leukocyte adhesion factor ICAM1, and chemokines that attract neutrophils, monocytes, and T cells. In an animal model of anti-TNF-resistant intestinal inflammation, genetic deletion or pharmacological blockade of OSM significantly attenuates colitis. Furthermore, according to an analysis of more than 200 patients with IBD, including two cohorts from phase 3 clinical trials of infliximab and golimumab, high pretreatment expression of OSM is strongly associated with failure of anti-TNF therapy. OSM is thus a potential biomarker and therapeutic target for IBD, and has particular relevance for anti-TNF-resistant patients.


Assuntos
Doenças Inflamatórias Intestinais/genética , Subunidade beta de Receptor de Oncostatina M/genética , Oncostatina M/genética , Adulto , Idoso , Animais , Anticorpos Monoclonais/uso terapêutico , Estudos de Casos e Controles , Quimiocinas , Colite/genética , Colite/imunologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Fármacos Gastrointestinais/uso terapêutico , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Imuno-Histoquímica , Inflamação , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Infliximab/uso terapêutico , Molécula 1 de Adesão Intercelular/imunologia , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Oncostatina M/imunologia , Oncostatina M/metabolismo , Subunidade beta de Receptor de Oncostatina M/imunologia , Subunidade beta de Receptor de Oncostatina M/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto Jovem
10.
Front Immunol ; 8: 258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28352268

RESUMO

The intestinal mucosa forms an active interface to the outside word, facilitating nutrient and water uptake and at the same time acts as a barrier toward the highly colonized intestinal lumen. A tight balance of the mucosal immune system is essential to tolerate harmless antigens derived from food or commensals and to effectively defend against potentially dangerous pathogens. Interferons (IFN) provide a first line of host defense when cells detect an invading organism. Whereas type I IFN were discovered almost 60 years ago, type III IFN were only identified in the early 2000s. It was initially thought that type I IFN and type III IFN performed largely redundant functions. However, it is becoming increasingly clear that type III IFN exert distinct and non-redundant functions compared to type I IFN, especially in mucosal tissues. Here, we review recent progress made in unraveling the role of type I/III IFN in intestinal mucosal tissue in the steady state, in response to mucosal pathogens and during inflammation.

11.
Front Immunol ; 7: 240, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446072

RESUMO

The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a "self-eating" survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders.

13.
Elife ; 5: e12444, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26910010

RESUMO

A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4(+) T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3(+) Treg cells. Specific ablation of Atg16l1 in Foxp3(+) Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders.


Assuntos
Proteínas de Transporte/metabolismo , Doenças Inflamatórias Intestinais/patologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/genética , Deleção de Genes , Camundongos , Camundongos Knockout
14.
J Immunol ; 193(8): 4223-34, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25210121

RESUMO

Recent results indicate a significant contribution of innate immune signaling to maintain mucosal homeostasis, but the precise underlying signal transduction pathways are ill-defined. By comparative analysis of intestinal epithelial cells isolated from conventionally raised and germ-free mice, as well as animals deficient in the adaptor molecules MyD88 and TRIF, the TLR3 and TLR4, as well as the type I and III IFN receptors, we demonstrate significant TLR-mediated signaling under homeostatic conditions. Surprisingly, homeostatic expression of Reg3γ and Paneth cell enteric antimicrobial peptides critically relied on TRIF and, in part, TLR3 but was independent of IFN receptor signaling. Reduced antimicrobial peptide expression was associated with significantly lower numbers of Paneth cells and a reduced Paneth cell maturation and differentiation factor expression in TRIF mutant compared with wild-type epithelium. This phenotype was not transferred to TRIF-sufficient germ-free animals during cohousing. Low antimicrobial peptide expression in TRIF-deficient mice caused reduced immediate killing of orally administered bacteria but was not associated with significant alterations in the overall composition of the enteric microbiota. The phenotype was rapidly restored in a TRIF-independent fashion after transient epithelial damage. Our results identify TRIF signaling as a truly homeostatic pathway to maintain intestinal epithelial barrier function revealing fundamental differences in the innate immune signaling between mucosal homeostasis and tissue repair.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Imunidade Inata/imunologia , Mucosa Intestinal/imunologia , Listeria monocytogenes/imunologia , Proteínas/metabolismo , Salmonella typhimurium/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Ciclinas/metabolismo , Mucosa Intestinal/microbiologia , Listeriose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Proteínas Associadas a Pancreatite , Celulas de Paneth/metabolismo , Receptores de Interferon/genética , Infecções por Salmonella/imunologia , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/genética
15.
Nature ; 513(7519): 564-568, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25043027

RESUMO

FOXP3(+) regulatory T cells (Treg cells) are abundant in the intestine, where they prevent dysregulated inflammatory responses to self and environmental stimuli. It is now appreciated that Treg cells acquire tissue-specific adaptations that facilitate their survival and function; however, key host factors controlling the Treg response in the intestine are poorly understood. The interleukin (IL)-1 family member IL-33 is constitutively expressed in epithelial cells at barrier sites, where it functions as an endogenous danger signal, or alarmin, in response to tissue damage. Recent studies in humans have described high levels of IL-33 in inflamed lesions of inflammatory bowel disease patients, suggesting a role for this cytokine in disease pathogenesis. In the intestine, both protective and pathological roles for IL-33 have been described in murine models of acute colitis, but its contribution to chronic inflammation remains ill defined. Here we show in mice that the IL-33 receptor ST2 is preferentially expressed on colonic Treg cells, where it promotes Treg function and adaptation to the inflammatory environment. IL-33 signalling in T cells stimulates Treg responses in several ways. First, it enhances transforming growth factor (TGF)-ß1-mediated differentiation of Treg cells and, second, it provides a necessary signal for Treg-cell accumulation and maintenance in inflamed tissues. Strikingly, IL-23, a key pro-inflammatory cytokine in the pathogenesis of inflammatory bowel disease, restrained Treg responses through inhibition of IL-33 responsiveness. These results demonstrate a hitherto unrecognized link between an endogenous mediator of tissue damage and a major anti-inflammatory pathway, and suggest that the balance between IL-33 and IL-23 may be a key controller of intestinal immune responses.


Assuntos
Interleucinas/imunologia , Intestinos/citologia , Intestinos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Colite/imunologia , Colite/patologia , Colo/citologia , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Feminino , Imunidade nas Mucosas , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-23/imunologia , Interleucina-33 , Interleucinas/antagonistas & inibidores , Interleucinas/metabolismo , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Reguladores/citologia , Timo/citologia , Fator de Crescimento Transformador beta/metabolismo
16.
Mucosal Immunol ; 7(4): 763-774, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24280937

RESUMO

Polymorphisms in the intracellular pattern recognition receptor gene NLRP3 (NLR family, pyrin domain containing 3) have been associated with susceptibility to Crohn's disease, a type of inflammatory bowel disease. Following tissue damage or infection, NLRP3 triggers the formation of inflammasomes, containing NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD domain), and caspase-1, that mediate secretion of interleukin (IL)-1ß and IL-18. However, the precise role of NLRP3 inflammasomes in mucosal inflammation and barrier protection remains unclear. Here we show that upon infection with the attaching/effacing intestinal pathogen Citrobacter rodentium, Nlrp3(-/-) and Asc(-/-) mice displayed increased bacterial colonization and dispersion, more severe weight loss, and exacerbated intestinal inflammation. Analyses of irradiation bone marrow chimeras revealed that protection from disease was mediated through Nlrp3 activation in nonhematopoietic cells and was initiated very early after infection. Thus, early activation of Nlrp3 in intestinal epithelial cells limits pathogen colonization and prevents subsequent pathology, potentially providing a functional link between NLRP3 polymorphisms and susceptibility to inflammatory bowel disease.


Assuntos
Proteínas de Transporte/genética , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Ativação Transcricional , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Citrobacter rodentium , Modelos Animais de Doenças , Resistência à Doença/imunologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais
17.
Traffic ; 14(3): 321-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23231467

RESUMO

Here we describe a novel approach for the isolation and biochemical characterization of pathogen-containing compartments from primary cells: We developed a lipid-based procedure to magnetically label the surface of bacteria and visualized the label by scanning and transmission electron microscopy (SEM, TEM). We performed infection experiments with magnetically labeled Mycobacterium avium, M. tuberculosis and Listeria monocytogenes and isolated magnetic bacteria-containing phagosomes using a strong magnetic field in a novel free-flow system. Magnetic labeling of M. tuberculosis did not affect the virulence characteristics of the bacteria during infection experiments addressing host cell activation, phagosome maturation delay and replication in macrophages in vitro. Biochemical analyses of the magnetic phagosome-containing fractions provided evidence of an enhanced presence of bacterial antigens and a differential distribution of proteins involved in the endocytic pathway over time as well as cytokine-dependent changes in the phagosomal protein composition. The newly developed method represents a useful approach to characterize and compare pathogen-containing compartments, in order to identify microbial and host cell targets for novel anti-infective strategies.


Assuntos
Imãs , Fagossomos/microbiologia , Coloração e Rotulagem/métodos , Humanos , Lipídeos/química , Listeria monocytogenes/isolamento & purificação , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Imãs/química , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Fluorescência , Mycobacterium/isolamento & purificação , Fagossomos/ultraestrutura
18.
EMBO Rep ; 13(8): 684-98, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22801555

RESUMO

The intestinal epithelium--which constitutes the interface between the enteric microbiota and host tissues--actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease.


Assuntos
Doença , Homeostase/imunologia , Imunidade Inata/imunologia , Mucosa Intestinal/imunologia , Transdução de Sinais/imunologia , Animais , Polaridade Celular/imunologia , Humanos , Mucosa Intestinal/citologia
19.
PLoS Pathog ; 8(5): e1002670, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570612

RESUMO

Rotavirus is a major cause of diarrhea worldwide and exhibits a pronounced small intestinal epithelial cell (IEC) tropism. Both human infants and neonatal mice are highly susceptible, whereas adult individuals remain asymptomatic and shed only low numbers of viral particles. Here we investigated age-dependent mechanisms of the intestinal epithelial innate immune response to rotavirus infection in an oral mouse infection model. Expression of the innate immune receptor for viral dsRNA, Toll-like receptor (Tlr) 3 was low in the epithelium of suckling mice but strongly increased during the postnatal period inversely correlating with rotavirus susceptibility, viral shedding and histological damage. Adult mice deficient in Tlr3 (Tlr3(-/-)) or the adaptor molecule Trif (Trif(Lps2/Lps2)) exerted significantly higher viral shedding and decreased epithelial expression of proinflammatory and antiviral genes as compared to wild-type animals. In contrast, neonatal mice deficient in Tlr3 or Trif did not display impaired cell stimulation or enhanced rotavirus susceptibility. Using chimeric mice, a major contribution of the non-hematopoietic cell compartment in the Trif-mediated antiviral host response was detected in adult animals. Finally, a significant age-dependent increase of TLR3 expression was also detected in human small intestinal biopsies. Thus, upregulation of epithelial TLR3 expression during infancy might contribute to the age-dependent susceptibility to rotavirus infection.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Envelhecimento , Suscetibilidade a Doenças , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Rotavirus/patogenicidade , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestino Delgado/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Reconhecimento de Padrão/biossíntese , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/genética , Eliminação de Partículas Virais
20.
Proc Natl Acad Sci U S A ; 108(19): 7944-9, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518880

RESUMO

Type I and type III IFNs bind to different cell-surface receptors but induce identical signal transduction pathways, leading to the expression of antiviral host effector molecules. Despite the fact that type III IFN (IFN-λ) has been shown to predominantly act on mucosal organs, in vivo infection studies have failed to attribute a specific, nonredundant function. Instead, a predominant role of type I IFN was observed, which was explained by the ubiquitous expression of the type I IFN receptor. Here we comparatively analyzed the role of functional IFN-λ and type I IFN receptor signaling in the innate immune response to intestinal rotavirus infection in vivo, and determined viral replication and antiviral gene expression on the cellular level. We observed that both suckling and adult mice lacking functional receptors for IFN-λ were impaired in the control of oral rotavirus infection, whereas animals lacking functional receptors for type I IFN were similar to wild-type mice. Using Mx1 protein accumulation as marker for IFN responsiveness of individual cells, we demonstrate that intestinal epithelial cells, which are the prime target cells of rotavirus, strongly responded to IFN-λ but only marginally to type I IFN in vivo. Systemic treatment of suckling mice with IFN-λ repressed rotavirus replication in the gut, whereas treatment with type I IFN was not effective. These results are unique in identifying a critical role of IFN-λ in the epithelial antiviral host defense.


Assuntos
Citocinas/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Animais , Imunidade Inata , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Rotavirus/imunologia , Rotavirus/fisiologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/patologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Transdução de Sinais/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...