Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (201)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38047558

RESUMO

Mosquitoes are effective vectors of deadly diseases and can navigate their chemical environment using chemosensory receptors expressed in their olfactory appendages. Understanding how chemosensory receptors are spatially organized in the peripheral olfactory appendages can offer insights into how odor is encoded in the mosquito olfactory system and inform new ways to combat the spread of mosquito-borne diseases. The emergence of third-generation hybridization chain reaction RNA whole-mount fluorescence in situ hybridization (HCR RNA WM-FISH) allows for spatial mapping and simultaneous expression profiling of multiple chemosensory genes. Here, we describe a stepwise approach for performing HCR RNA WM-FISH on the Anopheles mosquito antenna and maxillary palp. We investigated the sensitivity of this technique by examining the expression profile of ionotropic olfactory receptors. We asked if the HCR WM-FISH technique described was suitable for multiplexed studies by tethering RNA probes to three spectrally distinct fluorophores. Results provided evidence that HCR RNA WM-FISH is robustly sensitive to simultaneously detect multiple chemosensory genes in the antenna and maxillary palp olfactory appendages. Further investigations attest to the suitability of HCR WM-FISH for co-expression profiling of double and triple RNA targets. This technique, when applied with modifications, could be adaptable to localize genes of interest in the olfactory tissues of other insect species or in other appendages.


Assuntos
Anopheles , Receptores Odorantes , Animais , RNA/metabolismo , Hibridização in Situ Fluorescente , Mosquitos Vetores , Olfato/genética , Anopheles/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
2.
iScience ; 26(5): 106690, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37182106

RESUMO

Anopheles mosquitoes, as vectors for the malaria parasite, are a global threat to human health. To find and bite a human, they utilize neurons within their sensory appendages. However, the identity and quantification of sensory appendage neurons are lacking. Here we use a neurogenetic approach to label all neurons in Anopheles coluzzii mosquitoes. We utilize the homology assisted CRISPR knock-in (HACK) approach to generate a T2A-QF2w knock-in of the synaptic gene bruchpilot. We use a membrane-targeted GFP reporter to visualize the neurons in the brain and to quantify neurons in all major chemosensory appendages (antenna, maxillary palp, labella, tarsi, and ovipositor). By comparing labeling of brp>GFP and Orco>GFP mosquitoes, we predict the extent of neurons expressing ionotropic receptors (IRs) or other chemosensory receptors. This work introduces a valuable genetic tool for the functional analysis of Anopheles mosquito neurobiology and initiates characterization of the sensory neurons that guide mosquito behavior.

3.
Cell Rep ; 42(2): 112101, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36773296

RESUMO

The mosquito's antenna represents its main olfactory appendage for detecting volatile chemical cues from the environment. Whole-mount fluorescence in situ hybridization of ionotropic receptors (IRs) expressed in the antennae reveals that the antenna might be divisible into proximal and distal functional domains. The number of IR-positive cells appear stereotyped within each antennal segment (flagellomere). Highly expressed odor-tuning IRs exhibit distinct co-localization patterns with the IR coreceptors Ir8a, Ir25a, and Ir76b that might predict their functional properties. Genetic knockin and in vivo functional imaging of IR41c-expressing neurons indicate both odor-induced activation and inhibition in response to select amine compounds. Targeted mutagenesis of IR41c does not abolish behavioral responses to the amine compounds. Our study provides a comprehensive map of IR-expressing neurons in the main olfactory appendage of mosquitoes. These findings show organizing principles of Anopheles IR-expressing neurons, which might underlie their functional contribution to the detection of behaviorally relevant odors.


Assuntos
Anopheles , Malária , Receptores Odorantes , Animais , Hibridização in Situ Fluorescente , Olfato , Odorantes , Receptores Odorantes/genética
4.
Curr Opin Insect Sci ; 54: 100967, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096415

RESUMO

Half the world's human population is at risk for mosquito-borne diseases. Mosquitoes rely mainly on their sense of smell to find a vertebrate blood host, nectar source, and a suitable oviposition site. Advances in neurogenetic tools have now aided our understanding of the receptors that mediate the detection of sensory cues that emanate from humans. Recent studies in the anthropophilic mosquito vectors, Aedes aegypti and Anopheles gambiae, have implicated the chemosensory ionotropic-receptor (IR) family in the detection of behaviorally relevant odors and uncovered functions beyond chemical sensing. Here, we highlight the multifunctional roles of the chemosensory ionotropic receptors in anthropophilic mosquito vectors and suggest future directions to improve our understanding of the IR family.


Assuntos
Aedes , Anopheles , Feminino , Humanos , Animais , Mosquitos Vetores/fisiologia , Olfato , Odorantes
5.
Cold Spring Harb Protoc ; 2022(11): Pdb.prot107918, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35960624

RESUMO

Calcium imaging is a technique used to measure functional neuronal activities in response to stimuli. It has been used for years to study odorant-induced responses in insects (i.e., honeybees, Drosophila, and moths) and was recently introduced into mosquitoes. Traditionally, calcium imaging in mosquitoes was performed using nonspecific calcium indicator dyes to examine neuronal responses in whole insect brain regions, but the development of genetically encoded calcium indicators (GECIs) has facilitated the ability to perform functional calcium imaging on specific tissues. For example, by specifically expressing a GECI in olfactory neurons, the odor-induced responses of these neurons in peripheral organs can be examined. Calcium imaging of mosquito antennae further provides an advantageous method for simultaneously visualizing the activity of several antennal neurons in a single experiment. In this protocol, we describe a calcium imaging method to study odor-evoked responses in Anopheles coluzzii antennae expressing the calcium indicator GCaMP6f. This method requires imaging equipment (compound microscope, light sources, and camera), an odorant delivery system, and image acquisition software. The mosquito preparation is straightforward but requires practice to minimize mosquito movement during imaging. Recorded videos can be analyzed using Fiji software to generate heatmaps and activity traces for odorant-evoked responses. This protocol can also be used, with some modifications, to study other peripheral organs (such as labella, palps, and tarsi).


Assuntos
Anopheles , Animais , Anopheles/fisiologia , Cálcio , Olfato/fisiologia , Odorantes , Drosophila
6.
Cold Spring Harb Protoc ; 2022(11): Pdb.top107683, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35960627

RESUMO

Mosquitoes transmit a multitude of diseases to humans and animals through biting and blood feeding. To locate their hosts, mosquitoes primarily use their sense of smell. Therefore, an understanding of mosquito olfaction will help develop strategies to control the diseases they transmit. A mosquito's sense of smell is determined by the response of olfactory neurons on its peripheral olfactory organs. Traditionally, mosquito olfactory neuron activity has been examined using electrophysiological techniques such as electroantennography and single sensillum recordings. Electroantennography examines if an odorant is detectable by the ensemble of all antennal neurons. In contrast, single sensillum electrophysiology allows detailed recordings of the activity of two to three neurons at a time. However, single sensillum recording of olfactory neurons is difficult, laborious, and typically allows examination of only a few neurons on the antenna. A promising new approach is to use optical imaging techniques to provide a way to visualize the global response of olfactory organs to an odor, as well as the specific responses of several olfactory neurons to that odor. In particular, calcium imaging has progressed significantly, from the use of chemical calcium indicators to the development of genetically encoded calcium sensors. These advances have opened the way to study the mode of action of known mosquito attractants and repellents as well as a way to screen potential new attractants and repellents. Here, we provide an introduction to the different types of calcium indicators and their uses for investigating the function of mosquito sensory neurons.


Assuntos
Culicidae , Olfato , Humanos , Animais , Olfato/fisiologia , Cálcio , Odorantes , Neurônios
7.
Methods Mol Biol ; 2540: 35-78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980572

RESUMO

Binary expression systems are useful genetic tools for experimentally labeling or manipulating the function of defined cells. The Q-system is a repressible binary expression system that consists of a transcription factor QF (and the recently improved QF2/QF2w), the inhibitor QS, a QUAS-geneX effector, and a drug that inhibits QS (quinic acid). The Q-system can be used alone or in combination with other binary expression systems, such as GAL4/UAS and LexA/LexAop. In this review chapter, we discuss the past, present, and future of the Q-system for applications in Drosophila and other organisms. We discuss the in vivo application of the Q-system for transgenic labeling, the modular nature of QF that allows chimeric or split transcriptional activators to be developed, its temporal control by quinic acid, new methods to generate QF2 reagents, intersectional expression labeling, and its recent adoption into many emerging experimental species.


Assuntos
Proteínas de Drosophila , Ácido Quínico , Animais , Animais Geneticamente Modificados , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ácido Quínico/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes
8.
Elife ; 112022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442190

RESUMO

Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Células Quimiorreceptoras/metabolismo , Drosophila melanogaster/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato
9.
Cell Rep ; 38(10): 110494, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263579

RESUMO

Mosquitoes locate and approach humans based on the activity of odorant receptors (ORs) expressed on olfactory receptor neurons (ORNs). Olfactogenetic experiments in Anopheles gambiae mosquitoes revealed that the ectopic expression of an AgOR (AgOR2) in ORNs dampened the activity of the expressing neuron. This contrasts with studies in Drosophila melanogaster in which the ectopic expression of non-native ORs in ORNs confers ectopic neuronal responses without interfering with native olfactory physiology. RNA-seq analyses comparing wild-type antennae to those ectopically expressing AgOR2 in ORNs indicated that nearly all AgOR transcripts were significantly downregulated (except for AgOR2). Additional experiments suggest that AgOR2 protein rather than mRNA mediates this downregulation. Using in situ hybridization, we find that AgOR gene choice is active into adulthood and that AgOR2 expression inhibits AgORs from turning on at this late stage. Our study shows that the ORNs of Anopheles mosquitoes (in contrast to Drosophila) are sensitive to a currently unexplored mechanism of AgOR regulation.


Assuntos
Anopheles , Malária , Receptores Odorantes , Animais , Anopheles/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
10.
CRISPR J ; 4(6): 836-845, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34813372

RESUMO

Cas9 and a guide RNA (gRNA) function to target specific genomic loci for generation of a double-stranded break. Catalytic dead versions of Cas9 (dCas9) no longer cause double-stranded breaks and instead can serve as molecular scaffolds to target additional enzymatic proteins to specific genomic loci. To generate mutations in selected genomic residues, dCas9 can be used for genomic base editing by fusing a cytidine deaminase (CD) to induce C > T (or G>A) mutations at targeted sites. In this study, we test base editing in Drosophila by expressing a transgenic Drosophila base editor (based on the mammalian BE2) that consists of a fusion protein of CD, dCas9, and uracil glycosylase inhibitor. We utilized transgenic lines expressing gRNAs along with pan-tissue expression of the Drosophila base editor (Actin5C-BE2) and found high rates of base editing at multiple targeted loci in the 20 bp target sequence. Highest rates of conversion of C > T were found in positions 3-9 of the gRNA-targeted site, with conversion reaching ∼100% of targeted DNA in somatic tissues. Surprisingly, the simultaneous use of two gRNAs targeting a genomic region spaced ∼50 bp apart led to mutations between the two gRNA targets, implicating a method to broaden the available sites accessible to targeting. These results indicate base editing is efficient in Drosophila, and could be used to induce point mutations at select loci.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Drosophila/genética , Edição de Genes/métodos , Genoma , Mamíferos/genética , RNA Guia de Cinetoplastídeos/genética
11.
MicroPubl Biol ; 20212021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34007957

RESUMO

Drosophila melanogaster vinegar flies have two olfactory organs: the antenna and maxillary palp. Olfactory neurons in these tissues respond to odorants via odorant receptors. Insect odorant receptors are heterotetramers of two proteins: an odorant binding OrX subunit and an Odorant Receptor Co-Receptor (Orco). Mutation of Orco disrupts odorant receptor formation, and abolishes olfactory responses. Some antennal olfactory neurons in Orco mutants have been previously shown to degenerate. Here, we examine if maxillary palp olfactory neurons also degenerate in Orco mutants. We find degeneration occurs both more broadly and more rapidly in Orco mutant maxillary palp olfactory neurons than reported for antennae, with ~60% of all mutant olfactory neurons absent in maxillary palps by 7 days post eclosion. Interestingly, the subset of Orco mutant olfactory neurons that express the Or42a receptor appear resistant to degeneration. These results suggest the maxillary palp might be a suitable model for examining the molecular mechanisms underlying neurodegeneration in sensory neurons.

12.
PLoS One ; 16(5): e0250381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989293

RESUMO

Various insect species serve as valuable model systems for investigating the cellular and molecular mechanisms by which a brain controls sophisticated behaviors. In particular, the nervous system of Drosophila melanogaster has been extensively studied, yet experiments aimed at determining the number of neurons in the Drosophila brain are surprisingly lacking. Using isotropic fractionator coupled with immunohistochemistry, we counted the total number of neuronal and non-neuronal cells in the whole brain, central brain, and optic lobe of Drosophila melanogaster. For comparison, we also counted neuronal populations in three divergent mosquito species: Aedes aegypti, Anopheles coluzzii and Culex quinquefasciatus. The average number of neurons in a whole adult brain was determined to be 199,380 ±3,400 cells in D. melanogaster, 217,910 ±6,180 cells in Ae. aegypti, 223,020 ± 4,650 cells in An. coluzzii and 225,911±7,220 cells in C. quinquefasciatus. The mean neuronal cell count in the central brain vs. optic lobes for D. melanogaster (101,140 ±3,650 vs. 107,270 ± 2,720), Ae. aegypti (109,140 ± 3,550 vs. 112,000 ± 4,280), An. coluzzii (105,130 ± 3,670 vs. 107,140 ± 3,090), and C. quinquefasciatus (108,530 ±7,990 vs. 110,670 ± 3,950) was also estimated. Each insect brain was comprised of 89% ± 2% neurons out of its total cell population. Isotropic fractionation analyses did not identify obvious sexual dimorphism in the neuronal and non-neuronal cell population of these insects. Our study provides experimental evidence for the total number of neurons in Drosophila and mosquito brains.


Assuntos
Encéfalo/citologia , Neurônios/citologia , Aedes/citologia , Animais , Anopheles/citologia , Culex/citologia , Drosophila , Feminino , Masculino , Caracteres Sexuais
13.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33885760

RESUMO

As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.


Assuntos
Anopheles/fisiologia , Comportamento Animal/fisiologia , Olfato/fisiologia , Animais , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo
14.
Curr Biol ; 31(9): 1988-1994.e5, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33667373

RESUMO

Catnip (Nepeta cataria) is a common garden herb well known for its euphoric and hallucinogenic effects on domestic cats,1-3 for its medicinal properties,4,5 as well as for its powerful repellent action on insects.6,7 Catnip extracts have been proposed as a natural alternative to synthetic insect repellents, such as N,N-diethyl-3-methylbenzamide (DEET),8,9 but how catnip triggers aversion in insects is not known. Here, we show that, both in Drosophila melanogaster flies and Aedes aegypti mosquitoes, the major mediator of catnip repellency is the widely conserved chemical irritant receptor TRPA1. In vitro, both catnip extract and its active ingredient nepetalactone can directly activate fly and mosquito TRPA1. In vivo, D. melanogaster and Ae. aegypti TRPA1 mutants are no longer repelled by catnip and nepetalactone. Interestingly, our data show that some, but not all, fly and mosquito TRPA1 variants are catnip targets. Moreover, unlike the broad TRPA1 agonist allyl isothiocyanate (AITC) (an active ingredient of tear gas and wasabi), catnip does not activate human TRPA1. Our results support the use of catnip and nepetalactone as insect-selective irritants and suggest that, despite TRPA1's broad conservation, insect TRPA1 can be targeted for the development of safe repellents.


Assuntos
Aedes , Repelentes de Insetos , Nepeta , Aedes/genética , Animais , Gatos , DEET/farmacologia , Drosophila melanogaster/genética , Repelentes de Insetos/farmacologia , Irritantes
15.
Cell Rep Methods ; 1(3): 100051, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474958

RESUMO

The ability to express a gene in all neurons is a crucial tool for studying the nervous system. Zhao et al., 2021 unlock genetic access to all neurons in mosquitoes by generating the first pan-neuronal transgenes in this non-model insect.


Assuntos
Aedes , Animais , Aedes/genética , Neurônios/metabolismo , Sistema Nervoso , Transgenes
16.
Malar J ; 19(1): 127, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228701

RESUMO

BACKGROUND: The species-specific mode of action for DEET and many other mosquito repellents is often unclear. Confusion may arise for many reasons. First, the response of a single mosquito species is often used to represent all mosquito species. Second, behavioural studies usually test the effect of repellents on mosquito attraction towards human odorants, rather than their direct repulsive effect on mosquitoes. Third, the mosquito sensory neuron responses towards repellents are often not directly examined. METHODS: A close proximity response assay was used to test the direct repulsive effect of six mosquito repellents on Anopheles coluzzii, Aedes aegypti and Culex quinquefasciatus mosquitoes. Additionally, the behavioural assay and calcium imaging recordings of antennae were used to test the response of An. coluzzii mosquitoes towards two human odorants (1-octen-3-ol and benzaldehyde) at different concentrations, and mixtures of the repellents lemongrass oil and p-menthane-3,8-diol (PMD) with DEET. RESULTS: Anopheles coluzzii mosquitoes were repelled by lemongrass oil and PMD, while Ae. aegypti and Cx. quinquefasciatus mosquitoes were repelled by lemongrass oil, PMD, eugenol, and DEET. In addition, high concentrations of 1-octen-3-ol and benzaldehyde were repellent, and activated more olfactory receptor neurons on the An. coluzzii antennae than lower concentrations. Finally, changes in olfactory responses to repellent mixtures reflected changes in repulsive behaviours. CONCLUSIONS: The findings described here suggest that different species of mosquitoes have different behavioural responses to repellents. The data further suggest that high-odour concentrations may recruit repellent-sensing neurons, or generally excite many olfactory neurons, yielding repellent behavioural responses. Finally, DEET can decrease the neuronal and behavioural response of An. coluzzii mosquitoes towards PMD but not towards lemongrass oil. Overall, these studies can help inform mosquito repellent choice by species, guide decisions on effective repellent blends, and could ultimately identify the olfactory neurons and receptors in mosquitoes that mediate repellency.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Percepção Olfatória , Aedes/fisiologia , Animais , Anopheles/fisiologia , Aprendizagem da Esquiva , Benzaldeídos , Culex/fisiologia , DEET/farmacologia , Relação Dose-Resposta a Droga , Eugenol/farmacologia , Feminino , Octanóis , Odorantes , Óleos de Plantas/farmacologia , Especificidade da Espécie , Terpenos/farmacologia
17.
Curr Biol ; 29(21): 3669-3680.e5, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31630950

RESUMO

The mode of action for most mosquito repellents is unknown. This is primarily due to the difficulty in monitoring how the mosquito olfactory system responds to repellent odors. Here, we used the Q-system of binary expression to enable activity-dependent Ca2+ imaging in olfactory neurons of the African malaria mosquito Anopheles coluzzii. This system allows neuronal responses to common insect repellents to be directly visualized in living mosquitoes from all olfactory organs, including the antenna. The synthetic repellents N,N-diethyl-meta-toluamide (DEET) and IR3535 did not activate Anopheles odorant receptor co-receptor (Orco)-expressing olfactory receptor neurons (ORNs) at any concentration, and picaridin weakly activated ORNs only at high concentrations. In contrast, natural repellents (i.e. lemongrass oil and eugenol) strongly activated small numbers of ORNs in the Anopheles mosquito antennae at low concentrations. We determined that DEET, IR3535, and picaridin decrease the response of Orco-expressing ORNs when these repellents are physically mixed with activating human-derived odorants. We present evidence that synthetic repellents may primarily exert their olfactory mode of action by decreasing the amount of volatile odorants reaching ORNs. These results suggest that synthetic repellents disruptively change the chemical profile of host scent signatures on the skin surface, rendering humans invisible to Anopheles mosquitoes.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Repelentes de Insetos/farmacologia , Odorantes/análise , Percepção Olfatória/efeitos dos fármacos , Olfato/efeitos dos fármacos , Animais , DEET/química , DEET/farmacologia , Feminino , Humanos , Repelentes de Insetos/química , Piperidinas/química , Piperidinas/farmacologia , Propionatos/química , Propionatos/farmacologia , Receptores Odorantes/metabolismo
18.
Trends Pharmacol Sci ; 40(7): 449-451, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31122765

RESUMO

After a bloodmeal, Aedesaegypti mosquitoes lose interest in bloodfeeding. Duvall et al. (Cell 2019;176:687-701) determined that the neuropeptide Y (NPY)-like receptor 7 (NPYLR7) controls mosquito satiety and also identified six NPYLR7 drug targets that suppress biting. This work highlights an innovative approach in vector control linking insect behavior to drug discovery.


Assuntos
Aedes , Mordeduras e Picadas de Insetos , Animais , Dieta , Mosquitos Vetores , Receptores de Neuropeptídeo Y
19.
Curr Biol ; 29(8): R282-R284, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31014485

RESUMO

Mosquitoes use their sense of smell to find humans. A new study shows that the ionotropic receptor 8a (IR8a) plays a primary and non-redundant role in human host-seeking behaviors.


Assuntos
Aedes , Odorantes , Animais , Humanos , Amor , Olfato
20.
Cell Rep ; 24(6): 1667-1678, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089274

RESUMO

The sense of smell influences many behaviors, yet how odors are represented in the brain remains unclear. A major challenge to studying olfaction is the lack of methods allowing activation of specific types of olfactory neurons in an ethologically relevant setting. To address this, we developed a genetic method in Drosophila called olfactogenetics in which a narrowly tuned odorant receptor, Or56a, is ectopically expressed in different olfactory neuron types. Stimulation with geosmin (the only known Or56a ligand) in an Or56a mutant background leads to specific activation of only target olfactory neuron types. We used this approach to identify olfactory sensory neurons (OSNs) that directly guide oviposition decisions. We identify 5 OSN-types (Or71a, Or47b, Or49a, Or67b, and Or7a) that, when activated alone, suppress oviposition. Projection neurons partnering with these OSNs share a region of innervation in the lateral horn, suggesting that oviposition site selection might be encoded in this brain region.


Assuntos
Encéfalo/metabolismo , Drosophila/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Animais , Feminino , Oviposição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...