Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 726: 109241, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667908

RESUMO

A stacking sodium dodecyl sulfate polyacrylamide gel electrophoresis system has been used to resolve and quantify all the major myofibrillar protein components (actin, myosin, tropomyosin, and troponin C, T, and I). Quantification was achieved by densitometry of the fast green-stained gels calibrated with the use of purified proteins. The approximate molar ratios of these proteins in rabbit muscle are: actin : myosin: tropomyosin: troponin T: troponin I: troponin C = 7:1:1:1:1:1. On the basis of these results and available structural information one obtains an estimate of 254 myosin molecules per thick filament.


Assuntos
Miofibrilas , Tropomiosina , Actinas/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Miosinas/metabolismo , Coelhos , Tropomiosina/metabolismo , Troponina C/metabolismo
2.
Front Physiol ; 5: 460, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520664

RESUMO

The potential alterations to structure and associations with thin filament proteins caused by the dilated cardiomyopathy (DCM) associated tropomyosin (Tm) mutants E40K and E54K, and the hypertrophic cardiomyopathy (HCM) associated Tm mutants E62Q and L185R, were investigated. In order to ascertain what the cause of the known functional effects may be, structural and protein-protein interaction studies were conducted utilizing actomyosin ATPase activity measurements and spectroscopy. In actomyosin ATPase measurements, both HCM mutants and the DCM mutant E54K caused increases in Ca(2+)-induced maximal ATPase activities, while E40K caused a decrease. Investigation of Tm's ability to inhibit actomyosin ATPase in the absence of troponin showed that HCM-associated mutant Tms did not inhibit as well as wildtype, whereas the DCM associated mutant E40K inhibited better. E54K did not inhibit the actomyosin ATPase activity at any concentration of Tm tested. Thermal denaturation studies by circular dichroism and molecular modeling of the mutations in Tm showed that in general, the DCM mutants caused localized destabilization of the Tm dimers, while the HCM mutants resulted in increased stability. These findings demonstrate that the structural alterations in Tm observed here may affect the regulatory function of Tm on actin, thereby directly altering the ATPase rates of myosin.

3.
J Muscle Res Cell Motil ; 34(5-6): 441-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24264290

RESUMO

Dr. John Gergely passed away on July 26, 2013 after a long and distinguished career. His publications spanned 67 years. He founded the Department of Muscle Research in the Retina Foundation (which later became the Boston Biomedical Research Institute) and served as director for 34 years. Dr. Gergely served on the editorial boards of ten scientific journals. He was elected as a Fellow of both the Biophysical Society and the American Association for the Advancement of Science. Dr. Gergely made major contributions concerning muscle protein structure and function. He was best known for his work on the troponin complex. The insights of John and his associates have provided the foundation for our understanding of calcium regulation in skeletal and cardiac muscle.


Assuntos
Bioquímica/história , Fisiologia/história , Pesquisa Biomédica , História do Século XX , História do Século XXI , Humanos , Proteínas Musculares/química
4.
Nat Med ; 19(3): 305-12, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396207

RESUMO

EF-hand proteins are ubiquitous in cell signaling. Parvalbumin (Parv), the archetypal EF-hand protein, is a high-affinity Ca(2+) buffer in many biological systems. Given the centrality of Ca(2+) signaling in health and disease, EF-hand motifs designed to have new biological activities may have widespread utility. Here, an EF-hand motif substitution that had been presumed to destroy EF-hand function, that of glutamine for glutamate at position 12 of the second cation binding loop domain of Parv (ParvE101Q), markedly inverted relative cation affinities: Mg(2+) affinity increased, whereas Ca(2+) affinity decreased, forming a new ultra-delayed Ca(2+) buffer with favorable properties for promoting cardiac relaxation. In therapeutic testing, expression of ParvE101Q fully reversed the severe myocyte intrinsic contractile defect inherent to expression of native Parv and corrected abnormal myocardial relaxation in diastolic dysfunction disease models in vitro and in vivo. Strategic design of new EF-hand motif domains to modulate intracellular Ca(2+) signaling could benefit many biological systems with abnormal Ca(2+) handling, including the diseased heart.


Assuntos
Cálcio/metabolismo , Motivos EF Hand , Magnésio/metabolismo , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Parvalbuminas/química , Parvalbuminas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Feminino , Coração/fisiologia , Masculino , Dados de Sequência Molecular , Contração Muscular , Miocárdio/metabolismo , Estrutura Terciária de Proteína , Coelhos , Ratos , Ratos Sprague-Dawley , Alinhamento de Sequência
5.
J Biol Chem ; 287(44): 37362-70, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22977240

RESUMO

Human slow skeletal troponin T (HSSTnT) shares a high degree of homology with cardiac TnT (CTnT). Although the presence of HSSTnT has not been confirmed in the heart at the protein level, detectable levels of HSSTnT mRNA have been found. Whether HSSTnT isoforms are expressed transiently remains unknown. Because transient re-expression of HSSTnT may be a potential mechanism of regulating function, we explored the effect of HSSTnT on the regulation of cardiac muscle. At least three HSSTnT isoforms have been found to exist in slow skeletal muscle: HSSTnT1 (+exons 5 and 12), HSSTnT2 (+exon 5, -exon 12), and HSSTnT3 (-exons 5 and 12). Another isoform, HSSTnT hypothetical (Hyp) (-exon 5, +exon 12), has only been found at the mRNA level. Compared with HCTnT3 (adult isoform), Tn complexes containing HSSTnT1, -2, and -3 did not alter the actomyosin ATPase activation and inhibition in the presence and absence of Ca(2+), respectively. HSSTnTHyp was not evaluated as it did not form a Tn complex under a variety of conditions. Porcine papillary skinned fibers displaced with HSSTnT1, -2, or -3 and reconstituted with human cardiac troponin I and troponin C (HCTnI·TnC) complex showed a decrease in the Ca(2+) sensitivity of force development and an increase in maximal recovered force (HSSTnT1 and -3) compared with HCTnT3. In contrast, HSSTnTHyp showed an increase in the Ca(2+) sensitivity of force development. This suggests that re- or overexpression of specific SSTnT isoforms might have therapeutic potential in the failing heart because they increase the maximal force of contraction. In addition, circular dichroism and proteolytic digestion experiments revealed structural differences between HSSTnT isoforms and HCTnT3 and that HSSTnT1 is more susceptible to calpain and trypsin proteolysis than the other HSSTnTs. Overall, HSSTnT isoforms despite being homologues of CTnT may display distinct functional properties in muscle regulation.


Assuntos
Contração Miocárdica , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Troponina T/fisiologia , Animais , Cálcio/fisiologia , Calpaína/química , Dicroísmo Circular , Humanos , Técnicas In Vitro , Miocárdio/enzimologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miosinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Estrutura Secundária de Proteína , Proteólise , Sus scrofa , Troponina T/química , Troponina T/metabolismo , Tripsina/química
6.
J Biol Chem ; 287(38): 31845-55, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22815480

RESUMO

Defined as clinically unexplained hypertrophy of the left ventricle, hypertrophic cardiomyopathy (HCM) is traditionally understood as a disease of the cardiac sarcomere. Mutations in TNNC1-encoded cardiac troponin C (cTnC) are a relatively rare cause of HCM. Here, we report clinical and functional characterization of a novel TNNC1 mutation, A31S, identified in a pediatric HCM proband with multiple episodes of ventricular fibrillation and aborted sudden cardiac death. Diagnosed at age 5, the proband is family history-negative for HCM or sudden cardiac death, suggesting a de novo mutation. TnC-extracted cardiac skinned fibers were reconstituted with the cTnC-A31S mutant, which increased Ca(2+) sensitivity with no effect on the maximal contractile force generation. Reconstituted actomyosin ATPase assays with 50% cTnC-A31S:50% cTnC-WT demonstrated Ca(2+) sensitivity that was intermediate between 100% cTnC-A31S and 100% cTnC-WT, whereas the mutant increased the activation of the actomyosin ATPase without affecting the inhibitory qualities of the ATPase. The secondary structure of the cTnC mutant was evaluated by circular dichroism, which did not indicate global changes in structure. Fluorescence studies demonstrated increased Ca(2+) affinity in isolated cTnC, the troponin complex, thin filament, and to a lesser degree, thin filament with myosin subfragment 1. These results suggest that this mutation has a direct effect on the Ca(2+) sensitivity of the myofilament, which may alter Ca(2+) handling and contribute to the arrhythmogenesis observed in the proband. In summary, we report a novel mutation in the TNNC1 gene that is associated with HCM pathogenesis and may predispose to the pathogenesis of a fatal arrhythmogenic subtype of HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Predisposição Genética para Doença , Mutação , Miocárdio/metabolismo , Troponina C/genética , Troponina C/metabolismo , Fibrilação Ventricular/genética , Alelos , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Dicroísmo Circular , Clonagem Molecular , Estudos de Coortes , Humanos , Conformação Molecular , Miofibrilas/metabolismo , Miosinas/química , Fibrilação Ventricular/fisiopatologia
7.
J Biol Chem ; 287(3): 2156-67, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22086914

RESUMO

The R21C substitution in cardiac troponin I (cTnI) is the only identified mutation within its unique N-terminal extension that is associated with hypertrophic cardiomyopathy (HCM) in man. Particularly, this mutation is located in the consensus sequence for ß-adrenergic-activated protein kinase A (PKA)-mediated phosphorylation. The mechanisms by which this mutation leads to heart disease are still unclear. Therefore, we generated cTnI knock-in mouse models carrying an R21C mutation to evaluate the resultant functional consequences. Measuring the in vivo levels of incorporated mutant and WT cTnI, and their basal phosphorylation levels by top-down mass spectrometry demonstrated: 1) a dominant-negative effect such that, the R21C+/- hearts incorporated 24.9% of the mutant cTnI within the myofilament; and 2) the R21C mutation abolished the in vivo phosphorylation of Ser(23)/Ser(24) in the mutant cTnI. Adult heterozygous (R21C+/-) and homozygous (R21C+/+) mutant mice activated the fetal gene program and developed a remarkable degree of cardiac hypertrophy and fibrosis. Investigation of cardiac skinned fibers isolated from WT and heterozygous mice revealed that the WT cTnI was completely phosphorylated at Ser(23)/Ser(24) unless the mice were pre-treated with propranolol. After propranolol treatment (-PKA), the pCa-tension relationships of all three mice (i.e. WT, R21C+/-, and R21C+/+) were essentially the same. However, after treatment with propranolol and PKA, the R21C cTnI mutation reduced (R21C+/-) or abolished (R21C+/+) the well known decrease in the Ca(2+) sensitivity of tension that accompanies Ser(23)/Ser(24) cTnI phosphorylation. Altogether, the combined effects of the R21C mutation appear to contribute toward the development of HCM and suggest that another physiological role for the phosphorylation of Ser(23)/Ser(24) in cTnI is to prevent cardiac hypertrophy.


Assuntos
Substituição de Aminoácidos , Cardiomiopatia Hipertrófica Familiar/metabolismo , Mutação de Sentido Incorreto , Miocárdio/metabolismo , Miofibrilas/metabolismo , Troponina I/metabolismo , Animais , Antiarrítmicos/farmacologia , Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/patologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibrose Endomiocárdica/genética , Fibrose Endomiocárdica/metabolismo , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Mutantes , Miocárdio/patologia , Miofibrilas/genética , Miofibrilas/patologia , Fosforilação/genética , Propranolol/farmacologia , Troponina I/genética
8.
J Biol Chem ; 286(39): 34404-12, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21832052

RESUMO

TNNC1, which encodes cardiac troponin C (cTnC), remains elusive as a dilated cardiomyopathy (DCM) gene. Here, we report the clinical, genetic, and functional characterization of four TNNC1 rare variants (Y5H, M103I, D145E, and I148V), all previously reported by us in association with DCM (Hershberger, R. E., Norton, N., Morales, A., Li, D., Siegfried, J. D., and Gonzalez-Quintana, J. (2010) Circ. Cardiovasc. Genet. 3, 155-161); in the previous study, two variants (Y5H and D145E) were identified in subjects who also carried MYH7 and MYBPC3 rare variants, respectively. Functional studies using the recombinant human mutant cTnC proteins reconstituted into porcine papillary skinned fibers showed decreased Ca(2+) sensitivity of force development (Y5H and M103I). Furthermore, the cTnC mutants diminished (Y5H and I148V) or abolished (M103I) the effects of PKA phosphorylation on Ca(2+) sensitivity. Only M103I decreased the troponin activation properties of the actomyosin ATPase when Ca(2+) was present. CD spectroscopic studies of apo (absence of divalent cations)-, Mg(2+)-, and Ca(2+)/Mg(2+)-bound states indicated that all of the cTnC mutants (except I148V in the Ca(2+)/Mg(2+) condition) decreased the α-helical content. These results suggest that each mutation alters the function/ability of the myofilament to bind Ca(2+) as a result of modifications in cTnC structure. One variant (D145E) that was previously reported in association with hypertrophic cardiomyopathy and that produced results in vivo in this study consistent with prior hypertrophic cardiomyopathy functional studies was found associated with the MYBPC3 P910T rare variant, likely contributing to the observed DCM phenotype. We conclude that these rare variants alter the regulation of contraction in some way, and the combined clinical, molecular, genetic, and functional data reinforce the importance of TNNC1 rare variants in the pathogenesis of DCM.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Mutação de Sentido Incorreto , Miofibrilas/metabolismo , Troponina C/metabolismo , Animais , Cardiomiopatia Dilatada/genética , Feminino , Humanos , Masculino , Miofibrilas/genética , Estrutura Secundária de Proteína , Troponina C/química , Troponina C/genética
9.
J Biol Chem ; 286(23): 20901-12, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21502316

RESUMO

A novel double deletion in cardiac troponin T (cTnT) of two highly conserved amino acids (Asn-100 and Glu-101) was found in a restrictive cardiomyopathic (RCM) pediatric patient. Clinical evaluation revealed the presence of left atrial enlargement and marked left ventricle diastolic dysfunction. The explanted heart examined by electron microscopy revealed myofibrillar disarray and mild fibrosis. Pedigree analysis established that this mutation arose de novo. The patient tested negative for six other sarcomeric genes. The single and double recombinant cTnT mutants were generated, and their functional consequences were analyzed in porcine skinned cardiac muscle. In the adult Tn environment (cTnT3 + cardiac troponin I), the single cTnT3-ΔN100 and cTnT3-ΔE101 mutations had opposing effects on the Ca(2+) sensitivity of force development compared with WT, whereas the double deletion cTnT3-ΔN100/ΔE101 increased the Ca(2+) sensitivity + 0.19 pCa units. In addition, cTnT3-ΔN100/ΔE101 decreased the cooperativity of force development, suggesting alterations in intrafilament protein-protein interactions. In the fetal Tn environment, (cTnT1 + slow skeletal troponin I), the single (cTnT1-ΔN110) and double (cTnT1-ΔN110/ΔE111) deletions did not change the Ca(2+) sensitivity compared with control. To recreate the patient's heterozygous genotype, we performed a reconstituted ATPase activity assay. Thin filaments containing 50:50 cTnT3-ΔN100/ΔE101:cTnT3-WT also increased the myofilament Ca(2+) sensitivity compared with WT. Co-sedimentation of thin filament proteins indicated that no significant changes occurred in the binding of Tn containing the RCM cTnT mutation to actin-Tm. This report reveals the protective role of Tn fetal isoforms as they rescue the increased Ca(2+) sensitivity produced by a cTnT-RCM mutation and may account for the lack of lethality during gestation.


Assuntos
Cardiomiopatia Restritiva , Mutação INDEL , Contração Miocárdica , Miocárdio , Troponina T , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Adulto , Animais , Cálcio/metabolismo , Cardiomiopatia Restritiva/genética , Cardiomiopatia Restritiva/metabolismo , Cardiomiopatia Restritiva/patologia , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Linhagem , Proteínas Recombinantes , Suínos , Troponina T/genética , Troponina T/metabolismo
10.
J Biol Chem ; 286(2): 1005-13, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21056975

RESUMO

This spectroscopic study examined the steady-state and kinetic parameters governing the cross-bridge effect on the increased Ca(2+) affinity of hypertrophic cardiomyopathy-cardiac troponin C (HCM-cTnC) mutants. Previously, we found that incorporation of the A8V and D145E HCM-cTnC mutants, but not E134D into thin filaments (TFs), increased the apparent Ca(2+) affinity relative to TFs containing the WT protein. Here, we show that the addition of myosin subfragment 1 (S1) to TFs reconstituted with these mutants in the absence of MgATP(2-), the condition conducive to rigor cross-bridge formation, further increased the apparent Ca(2+) affinity. Stopped-flow fluorescence techniques were used to determine the kinetics of Ca(2+) dissociation (k(off)) from the cTnC mutants in the presence of TFs and S1. At a high level of complexity (i.e. TF + S1), an increase in the Ca(2+) affinity and decrease in k(off) was achieved for the A8V and D145E mutants when compared with WT. Therefore, it appears that the cTnC Ca(2+) off-rate is most likely to be affected rather than the Ca(2+) on rate. At all levels of TF complexity, the results obtained with the E134D mutant reproduced those seen with the WT protein. We conclude that strong cross-bridges potentiate the Ca(2+)-sensitizing effect of HCM-cTnC mutants on the myofilament. Finally, the slower k(off) from the A8V and D145E mutants can be directly correlated with the diastolic dysfunction seen in these patients.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Hipertrófica , Miócitos Cardíacos/fisiologia , Troponina C , Citoesqueleto de Actina/fisiologia , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Cinética , Mutagênese , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Subfragmentos de Miosina/metabolismo , Conformação Proteica , Coelhos , Suínos , Troponina C/química , Troponina C/genética , Troponina C/metabolismo
11.
Clin Transl Sci ; 3(5): 219-26, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20973921

RESUMO

Mutations in TNNT2, encoding cardiac troponin T, commonly shows early onset, aggressive dilated cardiomyopathy (DCM). This observation may influence the decision of whether to undertake clinical genetic testing for TNNT2 in later onset DCM. Further, the trigger for late onset DCM remains enigmatic. A 70-year-old woman, previously healthy with a left ventricular ejection fraction of 50%-55% at age 69, presented with DCM of unknown cause and a 4-month history progressive heart failure requiring cardiac transplantation. Clinical genetic testing revealed a novel TNNT2 R139H mutation but no relevant variants in 18 other DCM genes. Her explanted heart showed partial fatty replacement in the right ventricle. Sequencing for five arrhythmogenic right ventricular dysplasia genes was negative. Functional studies in porcine cardiac skinned fibers reconstituted with the mutant R139H troponin T protein showed decreased Ca(2+) sensitivity at pH 7, characteristic of DCM. Because fatty infiltration may acidify the myocellular environment, maximal force development examined at pH 6.5 was diminished, suggesting a possible environmental trigger. We conclude that the TNNT2 R139H mutation was likely to be disease causing. Further, later age of onset may not be relevant to exclude genetic testing for TNNT2 mutations.


Assuntos
Cardiomiopatia Dilatada/genética , Mutação/genética , Miocárdio/patologia , Troponina T/genética , Idade de Início , Idoso , Substituição de Aminoácidos/genética , Animais , Cardiomiopatia Dilatada/patologia , Éxons/genética , Feminino , Heterozigoto , Humanos , Íntrons/genética , Masculino , Linhagem , Sus scrofa
12.
J Biomed Biotechnol ; 2010: 350706, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20617149

RESUMO

Mutations in sarcomeric proteins have recently been established as heritable causes of Restrictive Cardiomyopathy (RCM). RCM is clinically characterized as a defect in cardiac diastolic function, such as, impaired ventricular relaxation, reduced diastolic volume and increased end-diastolic pressure. To date, mutations have been identified in the cardiac genes for desmin, alpha-actin, troponin I and troponin T. Functional studies in skinned muscle fibers reconstituted with troponin mutants have established phenotypes consistent with the clinical findings which include an increase in myofilament Ca(2+) sensitivity and basal force. Moreover, when RCM mutants are incorporated into reconstituted myofilaments, the ability to inhibit the ATPase activity is reduced. A majority of the mutations cluster in specific regions of cardiac troponin and appear to be mutational "hot spots". This paper highlights the functional and clinical characteristics of RCM linked mutations within the troponin complex.


Assuntos
Cardiomiopatia Restritiva/genética , Mutação , Troponina C/genética , Animais , Cardiomiopatia Restritiva/fisiopatologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas , Troponina C/fisiologia
13.
J Mol Cell Cardiol ; 49(3): 402-11, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20580639

RESUMO

Several cardiac troponin I (cTnI) mutations are associated with restrictive cardiomyopathy (RCM) in humans. We have created transgenic mice (cTnI(193His) mice) that express the corresponding human RCM R192H mutation. Phenotype of this RCM animal model includes restrictive ventricles, biatrial enlargement and sudden cardiac death, which are similar to those observed in RCM patients carrying the same cTnI mutation. In the present study, we modified the overall cTnI in cardiac muscle by crossing cTnI(193His) mice with transgenic mice expressing an N-terminal truncated cTnI (cTnI-ND) that enhances relaxation. Protein analyses determined that wild type cTnI was replaced by cTnI-ND in the heart of double transgenic mice (Double TG), which express only cTnI-ND and cTnI R193H in cardiac myocytes. The presence of cTnI-ND effectively rescued the lethal phenotype of RCM mice by reducing the mortality rate. Cardiac function was significantly improved in Double TG mice when measured by echocardiography. The hypersensitivity to Ca(2+) and the prolonged relaxation of RCM cTnI(193His) cardiac myocytes were completely reversed by the presence of cTnI-ND in RCM hearts. The results demonstrate that myofibril hypersensitivity to Ca(2+) is a key mechanism that causes impaired relaxation in RCM cTnI mutant hearts and Ca(2+) desensitization by cTnI-ND can correct diastolic dysfunction and rescue the RCM phenotypes, suggesting that Ca(2+) desensitization in myofibrils is a therapeutic option for treatment of diastolic dysfunction without interventions directed at the systemic beta-adrenergic-PKA pathways.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Restritiva/fisiopatologia , Mutação/genética , Miócitos Cardíacos/patologia , Troponina I/fisiologia , Animais , Western Blotting , Diástole , Ecocardiografia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Fenótipo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Biol Chem ; 285(36): 27785-97, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20566645

RESUMO

Cardiac diseases associated with mutations in troponin subunits include hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). Altered calcium handling in these diseases is evidenced by changes in the Ca(2+) sensitivity of contraction. Mutations in the Ca(2+) sensor, troponin C (TnC), were generated to increase/decrease the Ca(2+) sensitivity of cardiac skinned fibers to create the characteristic effects of DCM, HCM, and RCM. We also used a reconstituted assay to determine the mutation effects on ATPase activation and inhibition. One mutant (A23Q) was found with HCM-like properties (increased Ca(2+) sensitivity of force and normal levels of ATPase inhibition). Three mutants (S37G, V44Q, and L48Q) were identified with RCM-like properties (a large increase in Ca(2+) sensitivity, partial loss of ATPase inhibition, and increased basal force). Two mutations were identified (E40A and I61Q) with DCM properties (decreased Ca(2+) sensitivity, maximal force recovery, and activation of the ATPase at high [Ca(2+)]). Steady-state fluorescence was utilized to assess Ca(2+) affinity in isolated cardiac (c)TnCs containing F27W and did not necessarily mirror the fiber Ca(2+) sensitivity. Circular dichroism of mutant cTnCs revealed a trend where increased alpha-helical content correlated with increased Ca(2+) sensitivity in skinned fibers and vice versa. The main findings from this study were as follows: 1) cTnC mutants demonstrated distinct functional phenotypes reminiscent of bona fide HCM, RCM, and DCM mutations; 2) a region in cTnC associated with increased Ca(2+) sensitivity in skinned fibers was identified; and 3) the F27W reporter mutation affected Ca(2+) sensitivity, maximal force, and ATPase activation of some mutants.


Assuntos
Cálcio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Fenótipo , Troponina C/metabolismo , Actomiosina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Cálcio/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Fibras Musculares Esqueléticas/metabolismo , Mutação , Contração Miocárdica/efeitos dos fármacos , Engenharia de Proteínas , Estrutura Secundária de Proteína , Coelhos , Troponina C/química , Troponina C/genética
15.
J Biol Chem ; 285(23): 17371-9, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20371872

RESUMO

In this study we explore the mechanisms by which a double mutation (E59D/D75Y) in cardiac troponin C (CTnC) associated with dilated cardiomyopathy reduces the Ca(2+)-activated maximal tension of cardiac muscle. Studying the single mutants (i.e. E59D or D75Y) indicates that D75Y, but not E59D, causes a reduction in the calcium affinity of CTnC in troponin complex, regulated thin filaments (RTF), and the Ca(2+) sensitivity of contraction and ATPase in cardiac muscle preparations. However, both D75Y and E59D are required to reduce the actomyosin ATPase activity and maximal force in muscle fibers, indicating that E59D enhances the effects of D75Y. Part of the reduction in force/ATPase may be due to a defect in the interactions between CTnC and cardiac troponin T, which are known to be necessary for ATPase activation. An additional mechanism for the reduction in force/ATPase comes from measurements of the binding stoichiometry of myosin subfragment-1 (S-1) to the RTF. Using wild type RTFs, 4.8 mol S-1 was bound per mol filament (seven actins), whereas with E59D/D75Y RTFs, the number of binding sites was reduced by approximately 23% to 3.7. Altogether, these results suggest that the reduction in force and ATPase activation is possibly due to a thin filament conformation that promotes fewer accessible S-1-binding sites. In the absence of any family segregation data, the functional results presented here support the concept that this is likely a dilated cardiomyopathy-causing mutation.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Mutação , Troponina C/genética , Actinas/química , Adenosina Trifosfatases/química , Animais , Sítios de Ligação , Cálcio/química , Ativação Enzimática , Humanos , Contração Muscular , Miosinas/química , Ligação Proteica , Conformação Proteica , Suínos
16.
J Mol Cell Cardiol ; 48(5): 882-92, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19914256

RESUMO

Troponin (Tn) is a critical regulator of muscle contraction in cardiac muscle. Mutations in Tn subunits are associated with hypertrophic, dilated and restrictive cardiomyopathies. Improved diagnosis of cardiomyopathies as well as intensive investigation of new mouse cardiomyopathy models has significantly enhanced this field of research. Recent investigations have showed that the physiological effects of Tn mutations associated with hypertrophic, dilated and restrictive cardiomyopathies are different. Impaired relaxation is a universal finding of most transgenic models of HCM, predicted directly from the significant changes in Ca(2+) sensitivity of force production. Mutations associated with HCM and RCM show increased Ca(2+) sensitivity of force production while mutations associated with DCM demonstrate decreased Ca(2+) sensitivity of force production. This review spotlights recent advances in our understanding on the role of Tn mutations on ATPase activity, maximal force development and heart function as well as the correlation between the locations of these Tn mutations within the thin filament and myofilament function.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Restritiva/genética , Troponina/genética , Animais , Cálcio/metabolismo , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Restritiva/etiologia , Cardiomiopatia Restritiva/metabolismo , Humanos , Mutação
17.
Circ Cardiovasc Genet ; 2(4): 306-13, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20031601

RESUMO

BACKGROUND: A key issue for cardiovascular genetic medicine is ascertaining if a putative mutation indeed causes dilated cardiomyopathy (DCM). This is critically important as genetic DCM, usually presenting with advanced, life-threatening disease, may be preventable with early intervention in relatives known to carry the mutation. METHODS AND RESULTS: We recently undertook bidirectional resequencing of TNNT2, the cardiac troponin T gene, in 313 probands with DCM. We identified 6 TNNT2 protein-altering variants in 9 probands, all who had early onset, aggressive disease. Additional family members of mutation carriers were then studied when available. Four of the 9 probands had DCM without a family history, and 5 probands had familial DCM. Only 1 mutation (Lys210del) could be attributed as definitively causative from previous reports. Four of the 5 missense mutations were novel (Arg134Gly, Arg151Cys, Arg159Gln, and Arg205Trp), and one was previously reported with hypertrophic cardiomyopathy (Glu244Asp). Based on the clinical, pedigree, and molecular genetic data, these 5 mutations were considered possibly or likely disease causing. To further clarify their potential pathophysiologic impact, we undertook functional studies of these mutations in cardiac myocytes reconstituted with mutant troponin T proteins. We observed decreased Ca(2+) sensitivity of force development, a hallmark of DCM, in support of the conclusion that these mutations are disease causing. CONCLUSIONS: We conclude that the combination of clinical, pedigree, molecular genetic, and functional data strengthen the interpretation of TNNT2 mutations in DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Troponina T/genética , Adolescente , Adulto , Idoso , Substituição de Aminoácidos , Cálcio/metabolismo , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Hipertrófica/genética , Criança , Pré-Escolar , Predisposição Genética para Doença , Humanos , Lactente , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem
18.
J Mol Biol ; 392(5): 1158-67, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19651143

RESUMO

The human cardiac troponin I (hcTnI) mutation R145W has been associated with restrictive cardiomyopathy. In this study, simultaneous measurements of ATPase activity and force in skinned papillary fibers from hcTnI R145W transgenic mice (Tg-R145W) were explored. Tg-R145W fibers showed an approximately 13-16% increase in maximal Ca(2+)-activated force and ATPase activity compared to hcTnI wild-type transgenic mice. The force-generating cross-bridge turnover rate (g) and the energy cost (ATPase/force) were the same in all groups of fibers. Also, the Tg-R145W fibers showed a large increase in the Ca(2+) sensitivity of both force development and ATPase. In intact fibers, the mutation caused prolonged force and intracellular [Ca(2+)] transients and increased time to peak force. Analysis of force and Ca(2+) transients showed that there was a 40% increase in peak force in Tg-R145W muscles, which was likely due to the increased Ca(2+) transient duration. The above cited results suggest that: (1) there would be an increase in resistance to ventricular filling during diastole resulting from the prolonged force and Ca(2+) transients that would result in a decrease in ventricular filling (diastolic dysfunction); and (2) there would be a large (approximately 53%) increase in force during systole, which may help to partly compensate for diastolic dysfunction. These functional results help to explain the mechanisms by which these mutations give rise to a restrictive phenotype.


Assuntos
Substituição de Aminoácidos/genética , Cardiomiopatia Restritiva/genética , Mutação de Sentido Incorreto , Troponina I/genética , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miofibrilas/fisiologia
19.
J Biol Chem ; 284(28): 19090-100, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19439414

RESUMO

Recently four new hypertrophic cardiomyopathy mutations in cardiac troponin C (cTnC) (A8V, C84Y, E134D, and D145E) were reported, and their effects on the Ca(2+) sensitivity of force development were evaluated (Landstrom, A. P., Parvatiyar, M. S., Pinto, J. R., Marquardt, M. L., Bos, J. M., Tester, D. J., Ommen, S. R., Potter, J. D., and Ackerman, M. J. (2008) J. Mol. Cell. Cardiol. 45, 281-288). We performed actomyosin ATPase and spectroscopic solution studies to investigate the molecular properties of these mutations. Actomyosin ATPase activity was measured as a function of [Ca(2+)] utilizing reconstituted thin filaments (TFs) with 50% mutant and 50% wild type (WT) and 100% mutant cardiac troponin (cTn) complexes: A8V, C84Y, and D145E increased the Ca(2+) sensitivity with only A8V demonstrating lowered Ca(2+) sensitization at the 50% ratio when compared with 100%; E134D was the same as WT at both ratios. Of these four mutants, only D145E showed increased ATPase activation in the presence of Ca(2+). None of the mutants affected ATPase inhibition or the binding of cTn to the TF measured by co-sedimentation. Only D145E increased the Ca(2+) affinity of site II measured by 2-(4'-(2''-iodoacetamido)phenyl)aminonaphthalene-6-sulfonic acid fluorescence in isolated cTnC or the cTn complex. In the presence of the TF, only A8V was further sensitized to Ca(2+). Circular dichroism measurements in different metal-bound states of the isolated cTnCs showed changes in the secondary structure of A8V, C84Y, and D145E, whereas E134D was the same as WT. PyMol modeling of each cTnC mutant within the cTn complex revealed potential for local changes in the tertiary structure of A8V, C84Y, and D145E. Our results indicate that 1) three of the hypertrophic cardiomyopathy cTnC mutants increased the Ca(2+) sensitivity of the myofilament; 2) the effects of the mutations on the Ca(2+) affinity of isolated cTnC, cTn, and TF are not sufficient to explain the large Ca(2+) sensitivity changes seen in reconstituted and fiber assays; and 3) changes in the secondary structure of the cTnC mutants may contribute to modified protein-protein interactions along the sarcomere lattice disrupting the coupling between the cross-bridge and Ca(2+) binding to cTnC.


Assuntos
Cardiomiopatia Hipertrófica/genética , Mutação , Troponina C/genética , Actinas/química , Adenosina Trifosfatases/química , Sítios de Ligação , Cálcio/química , Cardiomiopatia Hipertrófica/patologia , Dicroísmo Circular , Clonagem Molecular , Humanos , Conformação Molecular , Miocárdio/patologia , Ligação Proteica , Estrutura Terciária de Proteína , Sensibilidade e Especificidade , Troponina C/fisiologia
20.
J Clin Invest ; 118(12): 3893-903, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19033660

RESUMO

In human cardiomyopathy, anatomical abnormalities such as hypertrophy and fibrosis contribute to the risk of ventricular arrhythmias and sudden death. Here we have shown that increased myofilament Ca2+ sensitivity, also a common feature in both inherited and acquired human cardiomyopathies, created arrhythmia susceptibility in mice, even in the absence of anatomical abnormalities. In mice expressing troponin T mutants that cause hypertrophic cardiomyopathy in humans, the risk of developing ventricular tachycardia was directly proportional to the degree of Ca2+ sensitization caused by the troponin T mutation. Arrhythmia susceptibility was reproduced with the Ca2+-sensitizing agent EMD 57033 and prevented by myofilament Ca2+ desensitization with blebbistatin. Ca2+ sensitization markedly changed the shape of ventricular action potentials, resulting in shorter effective refractory periods, greater beat-to-beat variability of action potential durations, and increased dispersion of ventricular conduction velocities at fast heart rates. Together these effects created an arrhythmogenic substrate. Thus, myofilament Ca2+ sensitization represents a heretofore unrecognized arrhythmia mechanism. The protective effect of blebbistatin provides what we believe to be the first direct evidence that reduction of Ca2+ sensitivity in myofilaments is antiarrhythmic and might be beneficial to individuals with hypertrophic cardiomyopathy.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Cardiotônicos/efeitos adversos , Quinolinas/efeitos adversos , Taquicardia Ventricular/metabolismo , Tiadiazinas/efeitos adversos , Citoesqueleto de Actina/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cardiomiopatia Hipertrófica/induzido quimicamente , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Cardiotônicos/farmacologia , Gatos , Morte Súbita Cardíaca , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Fibrose/induzido quimicamente , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Fibrose/fisiopatologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Quinolinas/farmacologia , Fatores de Risco , Taquicardia Ventricular/induzido quimicamente , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Tiadiazinas/farmacologia , Troponina T/genética , Troponina T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA