Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2639, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788252

RESUMO

Pseudomonas aeruginosa is one of the leading causes of healthcare-associated infections. For this study, the susceptibility profiles to antipseudomonal antibiotics and a quaternary ammonium compound, didecyldimethylammonium chloride (DDAC), widely used as a disinfectant, were established for 180 selected human and environmental hospital strains isolated between 2011 and 2020. Furthermore, a genomic study determined resistome and clonal putative relatedness for 77 of them. During the ten-year study period, it was estimated that 9.5% of patients' strains were resistant to carbapenems, 11.9% were multidrug-resistant (MDR), and 0.7% were extensively drug-resistant (XDR). Decreased susceptibility (DS) to DDAC was observed for 28.0% of strains, a phenotype significantly associated with MDR/XDR profiles and from hospital environmental samples (p < 0.0001). According to genomic analyses, the P. aeruginosa population unsusceptible to carbapenems and/or to DDAC was diverse but mainly belonged to top ten high-risk clones described worldwide by del Barrio-Tofiño et al. The carbapenem resistance appeared mainly due to the production of the VIM-2 carbapenemase (39.3%) and DS to DDAC mediated by MexAB-OprM pump efflux overexpression. This study highlights the diversity of MDR/XDR populations of P. aeruginosa which are unsusceptible to compounds that are widely used in medicine and hospital disinfection and are probably distributed in hospitals worldwide.


Assuntos
Fármacos Dermatológicos , Infecções por Pseudomonas , Humanos , Carbapenêmicos/farmacologia , Pseudomonas aeruginosa , Compostos de Amônio Quaternário/farmacologia , Proteínas de Membrana Transportadoras/genética , Antibacterianos/farmacologia , beta-Lactamases/genética , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
2.
Microbiol Spectr ; 10(1): e0159821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138170

RESUMO

Staphylococcus lugdunensis is a coagulase-negative Staphylococcus that emerges as an important opportunistic pathogen. However, little is known about the regulation underlying the transition from commensal to virulent state. Based on knowledge of S. aureus virulence, we suspected that the agr quorum sensing system may be an important determinant for the pathogenicity of S. lugdunensis. We investigated the functions of the transcriptional regulator AgrA using the agrA deletion mutant. AgrA played a role in cell pigmentation: ΔargA mutant colonies were white while the parental strains were slightly yellow. Compared with the wild-type strain, the ΔargA mutant was affected in its ability to form biofilm and was less able to survive in mice macrophages. Moreover, the growth of ΔagrA was significantly reduced by the addition of 10% NaCl or 0.4 mM H2O2 and its survival after 2 h in the presence of 1 mM H2O2 was more than 10-fold reduced. To explore the mechanisms involved beyond these phenotypes, the ΔagrA proteome and transcriptome were characterized by mass spectrometry and RNA-Seq. We found that AgrA controlled several virulence factors as well as stress-response factors, which are well correlated with the reduced resistance of the ΔagrA mutant to osmotic and oxidative stresses. These results were not the consequence of the deregulation of RNAIII of the agr system, since no phenotype or alteration of the proteomic profile has been observed for the ΔRNAIII mutant. Altogether, our results highlighted that the AgrA regulator of S. lugdunensis played a key role in its ability to become pathogenic. IMPORTANCE Although belonging to the natural human skin flora, Staphylococcus lugdunensis is recognized as a particularly aggressive and destructive pathogen. This study aimed to characterize the role of the response regulator AgrA, which is a component of the quorum-sensing agr system and known to be a major element in the regulation of pathogenicity and biofilm formation in Staphylococcus aureus. In the present study, we showed that, contrary to S. aureus, the agrA deletion mutant produced less biofilm. Inactivation of agrA conferred a white colony phenotype and impacted S. lugdunensis in its ability to survive in mice macrophages and to cope with osmotic and oxidative stresses. By global proteomic and transcriptomic approaches, we identified the AgrA regulon, bringing molecular bases underlying the observed phenotypes. Together, our data showed the importance of AgrA in the opportunistic pathogenic behavior of S. lugdunensis allowing it to be considered as an interesting therapeutic target.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Infecções Estafilocócicas/microbiologia , Staphylococcus lugdunensis/fisiologia , Staphylococcus lugdunensis/patogenicidade , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Staphylococcus lugdunensis/efeitos dos fármacos , Staphylococcus lugdunensis/genética , Virulência
3.
Pathogens ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36678412

RESUMO

Pseudomonas aeruginosa is one of the leading causes of healthcare-associated infections in humans. This bacterium is less represented in veterinary medicine, despite causing difficult-to-treat infections due to its capacity to acquire antimicrobial resistance, produce biofilms, and persist in the environment, along with its limited number of veterinary antibiotic therapies. Here, we explored susceptibility profiles to antibiotics and to didecyldimethylammonium chloride (DDAC), a quaternary ammonium widely used as a disinfectant, in 168 P. aeruginosa strains isolated from animals, mainly Equidae. A genomic study was performed on 41 of these strains to determine their serotype, sequence type (ST), relatedness, and resistome. Overall, 7.7% of animal strains were resistant to carbapenems, 10.1% presented a multidrug-resistant (MDR) profile, and 11.3% showed decreased susceptibility (DS) to DDAC. Genomic analyses revealed that the study population was diverse, and 4.9% were ST235, which is considered the most relevant human high-risk clone worldwide. This study found P. aeruginosa populations with carbapenem resistance, multidrug resistance, and DS to DDAC in equine and canine isolates. These strains, which are not susceptible to antibiotics used in veterinary and human medicine, warrant close the setting up of a clone monitoring, based on that already in place in human medicine, in a one-health approach.

4.
BMC Microbiol ; 20(1): 328, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115407

RESUMO

BACKGROUND: Staphylococcus lugdunensis is a coagulase-negative Staphylococcus part of the commensal skin flora but emerge as an important opportunistic pathogen. Because iron limitation is a crucial stress during infectious process, we performed phenotypic study and compared proteomic profiles of this species incubated in absence and in presence of the iron chelator 2,2'-dipyridyl (DIP). RESULTS: No modification of cell morphology nor cell wall thickness were observed in presence of DIP. However iron-limitation condition promoted biofilm formation and reduced the ability to cope with oxidative stress (1 mM H2O2). In addition, S. lugdunensis N920143 cultured with DIP was significantly less virulent in the larvae of Galleria mellonella model of infection than that grown under standard conditions. We verified that these phenotypes were due to an iron limitation by complementation experiments with FeSO4. By mass spectrometry after trypsin digestion, we characterized the first iron-limitation stress proteome in S. lugdunensis. Among 1426 proteins identified, 349 polypeptides were differentially expressed. 222 were more and 127 less abundant in S. lugdunensis incubated in iron-limitation condition, and by RT-qPCR, some of the corresponding genes have been shown to be transcriptionally regulated. Our data revealed that proteins involved in iron metabolism and carriers were over-expressed, as well as several ABC transporters and polypeptides linked to cell wall metabolism. Conversely, enzymes playing a role in the oxidative stress response (especially catalase) were repressed. CONCLUSIONS: This phenotypic and global proteomic study allowed characterization of the response of S. lugdunensis to iron-limitation. We showed that iron-limitation promoted biofilm formation, but decrease the oxidative stress resistance that may, at least in part, explained the reduced virulence of S. lugdunensis observed under low iron condition.


Assuntos
Ferro/metabolismo , Fenótipo , Staphylococcus lugdunensis/genética , Humanos , Proteômica , Staphylococcus lugdunensis/metabolismo , Staphylococcus lugdunensis/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...