Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 126: 104112, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891618

RESUMO

Winter provides many challenges for terrestrial arthropods, including low temperatures and decreased food availability. Most arthropods are dormant in the winter and resume activity when conditions are favorable, but a select few species remain active during winter. Winter activity is thought to provide a head start on spring growth and reproduction, but few studies have explicitly tested this idea or investigated tradeoffs associated with winter activity. Here, we detail biochemical changes in overwintering winter-active wolf spiders, Schizocosa stridulans, to test the hypothesis that winter activity promotes growth and energy balance. We also quantified levels of putative cryoprotectants throughout winter to test the prediction that winter activity is incompatible with biochemical adaptations for coping with extreme cold. Body mass of juveniles increased 3.5-fold across winter, providing empirical evidence that winter activity promotes growth and therefore advancement of spring reproduction. While spiders maintained protein content throughout most of the winter, lipid content decreased steadily, suggesting either a lack of available prey to maintain lipids, or more likely, an allometric shift in body composition as spiders grew larger. Carbohydrate content showed no clear seasonal trend but also tended to be higher at the beginning of the winter. Finally, we tested the hypothesis that winter activity is incompatible with cryoprotectant accumulation. However, we observed accumulation of glycerol, myo-inositol, and several other cryoprotectants, although levels were lower than those typically observed in overwintering arthropods. Together, our results indicate that winter-active wolf spiders grow during the winter, and while cryoprotectant accumulation was observed in the winter, the modest levels relative to other species could make them susceptible to extreme winter events.


Assuntos
Crioprotetores/análise , Metabolismo Energético , Aranhas/metabolismo , Adaptação Fisiológica , Animais , Índice de Massa Corporal , Carboidratos/análise , Temperatura Baixa/efeitos adversos , Glicerol/análise , Inositol/análise , Lipídeos/análise , Comportamento Predatório , Proteínas/análise , Reprodução , Estações do Ano , Aranhas/crescimento & desenvolvimento
2.
Oecologia ; 194(4): 529-539, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32725300

RESUMO

Species distributions are dependent on interactions with abiotic and biotic factors in the environment. Abiotic factors like temperature, moisture, and soil nutrients, along with biotic interactions within and between species, can all have strong influences on spatial distributions of plants and animals. Terrestrial Antarctic habitats are relatively simple and thus good systems to study ecological factors that drive species distributions and abundance. However, these environments are also sensitive to perturbation, and thus understanding the ecological drivers of species distribution is critical for predicting responses to environmental change. The Antarctic midge, Belgica antarctica, is the only endemic insect on the continent and has a patchy distribution along the Antarctic Peninsula. While its life history and physiology are well studied, factors that underlie variation in population density within its range are unknown. Previous work on Antarctic microfauna indicates that distribution over broad scales is primarily regulated by soil moisture, nitrogen content, and the presence of suitable plant life, but whether these patterns are true over smaller spatial scales has not been investigated. Here we sampled midges across five islands on the Antarctic Peninsula and tested a series of hypotheses to determine the relative influences of abiotic and biotic factors on midge abundance. While historical literature suggests that Antarctic organisms are limited by the abiotic environment, our best-supported hypothesis indicated that abundance is predicted by a combination of abiotic and biotic conditions. Our results are consistent with a growing body of literature that biotic interactions are more important in Antarctic ecosystems than historically appreciated.


Assuntos
Ecossistema , Solo , Animais , Regiões Antárticas , Ilhas , Plantas
3.
J Exp Biol ; 222(Pt 15)2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31345935

RESUMO

Rapid cold hardening (RCH) is a type of beneficial phenotypic plasticity that occurs on extremely short time scales (minutes to hours) to enhance insects' ability to cope with cold snaps and diurnal temperature fluctuations. RCH has a well-established role in extending lower lethal limits, but its ability to prevent sublethal cold injury has received less attention. The Antarctic midge, Belgica antarctica, is Antarctica's only endemic insect and has a well-studied RCH response that extends freeze tolerance in laboratory conditions. However, the discriminating temperatures used in previous studies of RCH are far below those ever experienced in the field. Here, we tested the hypothesis that RCH protects against non-lethal freezing injury. Larvae of B. antarctica were exposed to control (2°C), direct freezing (-9°C for 24 h) or RCH (-5°C for 2 h followed by -9°C for 24 h). All larvae survived both freezing treatments, but RCH larvae recovered more quickly from freezing stress and had a significantly higher metabolic rate during recovery. RCH larvae also sustained less damage to fat body and midgut tissue and had lower expression of two heat shock protein transcripts (hsp60 and hsp90), which is consistent with RCH protecting against protein denaturation. The protection afforded by RCH resulted in energy savings; directly frozen larvae experienced a significant depletion in glycogen energy stores that was not observed in RCH larvae. Together, these results provide strong evidence that RCH protects against a variety of sublethal freezing injuries and allows insects to rapidly fine-tune their performance in thermally variable environments.


Assuntos
Aclimatação , Chironomidae/fisiologia , Temperatura Baixa/efeitos adversos , Adaptação Fisiológica , Animais , Regiões Antárticas , Metabolismo Basal , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chironomidae/crescimento & desenvolvimento , Corpo Adiposo , Congelamento/efeitos adversos , Trato Gastrointestinal , Glicogênio/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Larva/fisiologia
4.
Trends Ecol Evol ; 34(6): 555-568, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30871734

RESUMO

Phenotypic plasticity is a ubiquitous and necessary adaptation of organisms to variable environments, but most environments have multiple dimensions that vary. Many studies have documented plasticity of a trait with respect to variation in multiple environmental factors. Such multidimensional phenotypic plasticity (MDPP) exists at all levels of organismal organization, from the whole organism to within cells. This complexity in plasticity cannot be explained solely by scaling up ideas from models of unidimensional plasticity. MDPP generates new questions about the mechanism and function of plasticity and its role in speciation and population persistence. Here we review empirical and theoretical approaches to plasticity in response to multidimensional environments and we outline new opportunities along with some difficulties facing future research.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Aclimatação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA