Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Accid Anal Prev ; 55: 232-41, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23567214

RESUMO

In this study, we investigated and assessed the dependence of dummy head injury mitigation on the side curtain airbag and occupant distance under a side impact of a Dodge Neon. Full-scale finite element vehicle simulations of a Dodge Neon with a side curtain airbag were performed to simulate the side impact. Owing to the wide range of parameters, an optimal matrix of finite element calculations was generated using the design method of experiments (DOE); the DOE method was performed to independently screen the finite element results and yield the desired parametric influences as outputs. Also, analysis of variance (ANOVA) techniques were used to analyze the finite element results data. The results clearly show that the influence of moving deformable barrier (MDB) strike velocity was the strongest influence parameter on both cases for the head injury criteria (HIC36) and the peak head acceleration, followed by the initial airbag inlet temperature. Interestingly, the initial airbag inlet temperature was only a ~30% smaller influence than the MDB velocity; also, the trigger time was a ~54% smaller influence than the MDB velocity when considering the peak head accelerations. Considering the wide range in MDB velocities used in this study, results of the study present an opportunity for design optimization using the different parameters to help mitigate occupant injury. As such, the initial airbag inlet temperature, the trigger time, and the airbag pressure should be incorporated into vehicular design process when optimizing for the head injury criteria.


Assuntos
Aceleração , Acidentes de Trânsito , Air Bags/efeitos adversos , Traumatismos Craniocerebrais/etiologia , Análise de Variância , Automóveis/normas , Fenômenos Biomecânicos , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Manequins , Temperatura
2.
Accid Anal Prev ; 49: 392-403, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23036418

RESUMO

The objective of this research is to elucidate the effect of side curtain airbag deployment on occupant injuries and safety when the occupant is either in-position or out-of-position (OOP). We used side impact vehicle collision simulations with a 1996 Dodge Neon model, which was further modified to include a side curtain airbag, a seatbelt, and a 50th percentile Hybrid III dummy. The airbag used in the study was inflated using both the uniform pressure (UP) and smooth particle hydrodynamics (SPH) methods. In-position and OOP simulations were performed to assess and establish guidelines for airbag aggressivity thresholds and occupant position versus risk of injury. Three different OOP scenarios (OOP1, OOP2, OOP3) were initially setup following the work of Lund (2003), then modified such that the dummy's head was closer to the airbag, increasing the chance of injury caused by the airbag. The resultant head acceleration as a function of time for in-position and OOP simulations shows that both UP and SPH methods produce similar peak accelerations in cases where the airbag is fully inflated prior to impact. In all cases, the head peak accelerations and the head injury criteria for simulations with an airbag were significantly lower when compared with the no airbag case, which would typically indicate that the use of an airbag results in improved occupant protection during side impact. However, in the case of OOP2 and OOP3, the neck flexion forces actually increase significantly when compared with the no airbag case. This finding indicates that the HIC and neck flexion forces criterion are in conflict and that there may be a tradeoff in terms of occupant injury/safety with a side curtain airbag that is strongly correlated to the occupant position. Consequently, this study shows that safety devices result in a significant effect on occupant injury/safety when the occupant is in OOP conditions. Moreover, in some cases, simulation results show that the side curtain airbag may not make the occupant safer. This study requires further investigation of the vehicle-specific airbag and its interaction with an occupant in various OOP conditions.


Assuntos
Acidentes de Trânsito , Air Bags , Qualidade de Produtos para o Consumidor , Traumatismos Craniocerebrais/prevenção & controle , Lesões do Pescoço/prevenção & controle , Postura , Segurança , Aceleração , Air Bags/efeitos adversos , Fenômenos Biomecânicos , Traumatismos Craniocerebrais/etiologia , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Manequins , Lesões do Pescoço/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...