Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2420, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286801

RESUMO

Equiluminant stimuli help assess the integrity of colour perception and the relationship of colour to other visual features. As a result of individual variation, it is necessary to calibrate experimental visual stimuli to suit each individual's unique equiluminant ratio. Most traditional methods rely on training observers to report their subjective equiluminance point. Such paradigms cannot easily be implemented on pre-verbal or non-verbal observers. Here, we present a novel Pupil Frequency-Tagging Method (PFTM) for detecting a participant's unique equiluminance point without verbal instruction and with minimal training. PFTM analyses reflexive pupil oscillations induced by slow (< 2 Hz) temporal alternations between coloured stimuli. Two equiluminant stimuli will induce a similar pupil dilation response regardless of colour; therefore, an observer's equiluminant point can be identified as the luminance ratio between two colours for which the oscillatory amplitude of the pupil at the tagged frequency is minimal. We compared pupillometry-based equiluminance ratios to those obtained with two established techniques in humans: minimum flicker and minimum motion. In addition, we estimated the equiluminance point in non-human primates, demonstrating that this new technique can be successfully employed in non-verbal subjects.


Assuntos
Percepção de Cores , Sensibilidades de Contraste , Animais , Humanos , Percepção de Cores/fisiologia , Pupila , Exame Físico , Fatores de Tempo , Estimulação Luminosa
2.
Nat Neurosci ; 26(11): 1981-1993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828228

RESUMO

Sleep has long been considered as a state of behavioral disconnection from the environment, without reactivity to external stimuli. Here we questioned this 'sleep disconnection' dogma by directly investigating behavioral responsiveness in 49 napping participants (27 with narcolepsy and 22 healthy volunteers) engaged in a lexical decision task. Participants were instructed to frown or smile depending on the stimulus type. We found accurate behavioral responses, visible via contractions of the corrugator or zygomatic muscles, in most sleep stages in both groups (except slow-wave sleep in healthy volunteers). Across sleep stages, responses occurred more frequently when stimuli were presented during high cognitive states than during low cognitive states, as indexed by prestimulus electroencephalography. Our findings suggest that transient windows of reactivity to external stimuli exist during bona fide sleep, even in healthy individuals. Such windows of reactivity could pave the way for real-time communication with sleepers to probe sleep-related mental and cognitive processes.


Assuntos
Encéfalo , Sono , Humanos , Sono/fisiologia , Encéfalo/fisiologia , Fases do Sono/fisiologia , Eletroencefalografia , Cognição
3.
Neuropsychologia ; 188: 108632, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385373

RESUMO

Free will has been at the heart of philosophical and scientific discussions for many years. However, recent advances in neuroscience have been perceived as a threat to the commonsense notion of free will as they challenge two core requirements for actions to be free. The first is the notion of determinism and free will, i.e., decisions and actions must not be entirely determined by antecedent causes. The second is the notion of mental causation, i.e., our mental state must have causal effects in the physical world, in other words, actions are caused by conscious intention. We present the classical philosophical positions related to determinism and mental causation, and discuss how neuroscience could shed a new light on the philosophical debate based on recent experimental findings. Overall, we conclude that the current evidence is insufficient to undermine free will.


Assuntos
Neurociências , Autonomia Pessoal , Humanos , Estado de Consciência , Intenção
4.
Sci Data ; 10(1): 224, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081025

RESUMO

Although very well adapted to brain study, Magnetic Resonance Imaging (MRI) remains limited by the facilities and capabilities required to acquire data, especially for non-human primates. Addressing the data gaps resulting from these limitations requires making data more accessible and open. In contempt of the regular use of Saimiri sciureus in neuroscience research, in vivo diffusion has yet to be openly available for this species. Here we built and made openly available a unique new resource consisting of a high-resolution, multishell diffusion-weighted dataset in the anesthetized Saimiri sciureus. The data were acquired on 11 individuals with an 11.7 T MRI scanner (isotropic resolution of 400 µm3). This paper presents an overview of our dataset and illustrates some of its possible use through example analyses. To assess the quality of our data, we analyzed long-range connections (whole-brain tractography), microstructure (Neurite Orientation Dispersion and Density Imaging), and axon diameter in the corpus callosum (ActiveAx). Constituting an essential new resource for primate evolution studies, all data are openly available.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Primatas , Saimiri
5.
Cell Rep ; 42(4): 112369, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043356

RESUMO

To better understand how the brain allows primates to perform various sets of tasks, the ability to simultaneously record neural activity at multiple spatiotemporal scales is challenging but necessary. However, the contribution of single-unit activities (SUAs) to neurovascular activity remains to be fully understood. Here, we combine functional ultrasound imaging of cerebral blood volume (CBV) and SUA recordings in visual and fronto-medial cortices of behaving macaques. We show that SUA provides a significant estimate of the neurovascular response below the typical fMRI spatial resolution of 2mm3. Furthermore, our results also show that SUAs and CBV activities are statistically uncorrelated during the resting state but correlate during tasks. These results have important implications for interpreting functional imaging findings while one constructs inferences of SUA during resting state or tasks.


Assuntos
Volume Sanguíneo Cerebral , Circulação Cerebrovascular , Animais , Circulação Cerebrovascular/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Primatas , Imageamento por Ressonância Magnética/métodos , Neurônios/fisiologia , Cognição
6.
NPJ Parkinsons Dis ; 8(1): 125, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184657

RESUMO

Anticipatory actions require to keep track of elapsed time and inhibitory control. These cognitive functions could be impacted in Parkinson's disease (iPD). To test this hypothesis, a saccadic reaction time task was used where a visual warning stimulus (WS) predicted the occurrence of an imperative one (IS) appearing after a short delay. In the implicit condition, subjects were not informed about the duration of the delay, disfavoring anticipatory behavior but leaving inhibitory control unaltered. In the explicit condition, delay duration was cued. This should favor anticipatory behavior and perhaps alter inhibitory control. This hypothesis was tested in controls (N = 18) and age-matched iPD patients (N = 20; ON and OFF L-DOPA). We found that the latency distribution of saccades before the IS was bimodal. The 1st mode weakly depended on temporal information and was more prominent in iPD. Saccades in this mode were premature and could result of a lack of inhibition. The 2nd mode covaried with cued duration suggesting that these movements were genuine anticipatory saccades. The explicit condition increased the probability of anticipatory saccades before the IS in controls and iPDON but not iPDOFF patients. Furthermore, in iPD patients the probability of sequences of 1st mode premature responses increased. In conclusion, the triggering of a premature saccade or the initiation of a controlled anticipatory one could be conceptualized as the output of two independent stochastic processes. Altered time perception and increased motor impulsivity could alter the balance between these two processes in favor of the latter in iPD, particularly OFF L-Dopa.

7.
Comput Methods Programs Biomed ; 221: 106929, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35675721

RESUMO

BACKGROUND AND OBJECTIVE: Eye-movement trajectories are rich behavioral data, providing a window on how the brain processes information. We address the challenge of characterizing signs of visuo-spatial neglect from saccadic eye trajectories recorded in brain-damaged patients with spatial neglect as well as in healthy controls during a visual search task. METHODS: We establish a standardized pre-processing pipeline adaptable to other task-based eye-tracker measurements. We use traditional machine learning algorithms together with deep convolutional networks (both 1D and 2D) to automatically analyze eye trajectories. RESULTS: Our top-performing machine learning models classified neglect patients vs. healthy individuals with an Area Under the ROC curve (AUC) ranging from 0.83 to 0.86. Moreover, the 1D convolutional neural network scores correlated with the degree of severity of neglect behavior as estimated with standardized paper-and-pencil tests and with the integrity of white matter tracts measured from Diffusion Tensor Imaging (DTI). Interestingly, the latter showed a clear correlation with the third branch of the superior longitudinal fasciculus (SLF), especially damaged in neglect. CONCLUSIONS: The study introduces new methods for both the pre-processing and the classification of eye-movement trajectories in patients with neglect syndrome. The proposed methods can likely be applied to other types of neurological diseases opening the possibility of new computer-aided, precise, sensitive and non-invasive diagnostic tools.


Assuntos
Imagem de Tensor de Difusão , Transtornos da Percepção , Algoritmos , Tecnologia de Rastreamento Ocular , Humanos , Aprendizado de Máquina , Transtornos da Percepção/diagnóstico
8.
PLoS Biol ; 20(5): e3001654, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617290

RESUMO

In both human and nonhuman primates (NHP), the medial prefrontal region, defined as the supplementary eye field (SEF), can indirectly influence behavior selection through modulation of the primary selection process in the oculomotor structures. To perform this oculomotor control, SEF integrates multiple cognitive signals such as attention, memory, reward, and error. As changes in pupil responses can assess these cognitive efforts, a better understanding of the precise dynamics by which pupil diameter and medial prefrontal cortex activity interact requires thorough investigations before, during, and after changes in pupil diameter. We tested whether SEF activity is related to pupil dynamics during a mixed pro/antisaccade oculomotor task in 2 macaque monkeys. We used functional ultrasound (fUS) imaging to examine temporal changes in brain activity at the 0.1-s time scale and 0.1-mm spatial resolution concerning behavioral performance and pupil dynamics. By combining the pupil signals and real-time imaging of NHP during cognitive tasks, we were able to infer localized cerebral blood volume (CBV) responses within a restricted part of the dorsomedial prefrontal cortex, referred to as the SEF, an area in which antisaccade preparation activity is also recorded. Inversely, SEF neurovascular activity measured by fUS imaging was found to be a robust predictor of specific variations in pupil diameter over short and long-time scales. Furthermore, we directly manipulated pupil diameter and CBV in the SEF using reward modulations. These results bring a novel understanding of the physiological links between pupil and SEF, but it also raises questions about the role of anterior cingulate cortex (ACC), as CBV variations in the ACC seems to be negligible compared to CBV variations in the SEF.


Assuntos
Pupila , Movimentos Sacádicos , Animais , Cognição , Lobo Frontal/fisiologia , Macaca mulatta
9.
Proc Natl Acad Sci U S A ; 119(10): e2115973119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235463

RESUMO

White matter disorders of the central nervous system (CNS), such as multiple sclerosis (MS), lead to failure of nerve conduction and long-lasting neurological disabilities affecting a variety of sensory and motor systems, including vision. While most disease-modifying therapies target the immune and inflammatory response, the promotion of remyelination has become a new therapeutic avenue to prevent neuronal degeneration and promote recovery. Most of these strategies have been developed in short-lived rodent models of demyelination, which spontaneously repair and do not reflect the size, organization, and biology of the human CNS. Thus, well-defined nonhuman primate models are required to efficiently advance therapeutic approaches for patients. Here, we followed the consequence of long-term toxin-induced demyelination of the macaque optic nerve on remyelination and axon preservation, as well as its impact on visual functions. Findings from oculomotor behavior, ophthalmic examination, electrophysiology, and retinal imaging indicate visual impairment involving the optic nerve and retina. These visual dysfunctions fully correlated at the anatomical level, with sustained optic nerve demyelination, axonal degeneration, and alterations of the inner retinal layers. This nonhuman primate model of chronic optic nerve demyelination associated with axonal degeneration and visual dysfunction, recapitulates several key features of MS lesions and should be instrumental in providing the missing link to translate emerging repair promyelinating/neuroprotective therapies to the clinic for myelin disorders, such as MS.


Assuntos
Axônios , Nervo Óptico/patologia , Remielinização , Retina/patologia , Transtornos da Visão/patologia , Animais , Modelos Animais de Doenças , Potenciais Evocados Visuais , Macaca fascicularis , Masculino , Esclerose Múltipla/patologia , Reflexo Pupilar , Retina/diagnóstico por imagem , Retina/fisiopatologia , Tomografia de Coerência Óptica
10.
Sci Rep ; 12(1): 2193, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140247

RESUMO

Tourette disorder (TD) is characterized by tics, which are sudden repetitive involuntary movements or vocalizations. Deficits in inhibitory control in TD patients remain inconclusive from the traditional method of estimating the ability to stop an impending action, which requires careful interpretation of a metric derived from race model. One possible explanation for these inconsistencies is that race model's assumptions of independent and stochastic rise of GO and STOP process to a fixed threshold are often violated, making the classical metric to assess inhibitory control less robust. Here, we used a pair of metrics derived from a recent alternative model to address why stopping performance in TD is unaffected despite atypical neural circuitry. These new metrics distinguish between proactive and reactive inhibitory control and estimate them separately. When these metrics in adult TD group were contrasted with healthy controls (HC), we identified robust deficits in reactive control, but not in proactive control in TD. The TD group exhibited difficulty in slowing down the speed of movement preparation, which they rectified by their intact ability to postpone the movement.


Assuntos
Inibição Proativa , Síndrome de Tourette , Adulto , Transtorno do Deficit de Atenção com Hiperatividade , Benchmarking/métodos , Comorbidade , Correlação de Dados , Feminino , Humanos , Inibição Psicológica , Masculino , Modelos Estatísticos , Tempo de Reação/fisiologia
11.
Mol Ther Methods Clin Dev ; 24: 1-10, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34977267

RESUMO

Over the last 15 years, optogenetics has changed fundamental research in neuroscience and is now reaching toward therapeutic applications. Vision restoration strategies using optogenetics are now at the forefront of these new clinical opportunities. But applications to human patients suffering from retinal diseases leading to blindness raise important concerns on the long-term functional expression of optogenes and the efficient signal transmission to higher visual centers. Here, we demonstrate in non-human primates continued expression and functionality at the retina level ∼20 months after delivery of our construct. We also performed in vivo recordings of visually evoked potentials in the primary visual cortex of anesthetized animals. Using synaptic blockers, we isolated the in vivo cortical activation resulting from the direct optogenetic stimulation of primate retina. In conclusion, our work indicates long-term transgene expression and transmission of the signal generated in the macaque retina to the visual cortex, two important features for future clinical applications.

12.
Front Synaptic Neurosci ; 13: 725880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621162

RESUMO

Although many details remain unknown, several positive statements can be made about the laminar distribution of primate frontal eye field (FEF) neurons with different physiological properties. Most certainly, pyramidal neurons in the deep layer of FEF that project to the brainstem carry movement and fixation signals but clear evidence also support that at least some deep-layer pyramidal neurons projecting to the superior colliculus carry visual responses. Thus, deep-layer neurons in FEF are functionally heterogeneous. Despite the useful functional distinctions between neuronal responses in vivo, the underlying existence of distinct cell types remain uncertain, mostly due to methodological limitations of extracellular recordings in awake behaving primates. To substantiate the functionally defined cell types encountered in the deep layer of FEF, we measured the biophysical properties of pyramidal neurons recorded intracellularly in brain slices issued from macaque monkey biopsies. Here, we found that biophysical properties recorded in vitro permit us to distinguish two main subtypes of regular-spiking neurons, with, respectively, low-resistance and low excitability vs. high-resistance and strong excitability. These results provide useful constraints for cognitive models of visual attention and saccade production by indicating that at least two distinct populations of deep-layer neurons exist.

13.
Cereb Cortex ; 32(1): 216-230, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34590113

RESUMO

Action selection refers to the decision regarding which action to perform in order to reach a desired goal, that is, the "what" component of intention. Whether the action is freely chosen or externally instructed involves different brain networks during the selection phase, but it is assumed that the way an action is selected should not influence the subsequent execution phase of the same movement. Here, we aim to test this hypothesis by investigating whether the modality of movement selection influences the brain networks involved during the execution phase of the movement. Twenty healthy volunteers performed a delayed response task in an event-related functional magnetic resonance imaging design to compare freely chosen and instructed unimanual or bimanual movements during the execution phase. Using activation analyses, we found that the pre-supplementary motor area (preSMA) and the parietal and cerebellar areas were more activated during the execution phase of freely chosen as compared to instructed movements. Connectivity analysis showed an increase of information flow between the right posterior parietal cortex and the cerebellum for freely chosen compared to instructed movements. We suggest that the parieto-cerebellar network is particularly engaged during freely chosen movement to monitor the congruence between the intentional content of our actions and their outcome.


Assuntos
Mapeamento Encefálico , Desempenho Psicomotor , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Movimento/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia
14.
Vision (Basel) ; 5(3)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34462414

RESUMO

We introduce a blind spot method to create image changes contingent on eye movements. One challenge of eye movement research is triggering display changes contingent on gaze. The eye-tracking system must capture the image of the eye, discover and track the pupil and corneal reflections to estimate the gaze position, and then transfer this data to the computer that updates the display. All of these steps introduce delays that are often difficult to predict. To avoid these issues, we describe a simple blind spot method to generate gaze contingent display manipulations without any eye-tracking system and/or display controls.

15.
Neurosci Biobehav Rev ; 128: 152-164, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34118293

RESUMO

Clinical neuroscience research relying on animal models brought valuable translational insights into the function and pathologies of the human brain. The anatomical, physiological, and behavioural similarities between humans and mammals have prompted researchers to study cerebral mechanisms at different levels to develop and test new treatments. The vast majority of biomedical research uses rodent models, which are easily manipulable and have a broadly resembling organisation to the human nervous system but cannot satisfactorily mimic some disorders. For these disorders, macaque monkeys have been used as they have a more comparable central nervous system. Still, this research has been hampered by limitations, including high costs and reduced samples. This review argues that a squirrel monkey model might bridge the gap by complementing translational research from rodents, macaque, and humans. With the advent of promising new methods such as ultrasound imaging, tool miniaturisation, and a shift towards open science, the squirrel monkey model represents a window of opportunity that will potentially fuel new translational discoveries in the diagnosis and treatment of brain pathologies.


Assuntos
Neurociências , Animais , Encéfalo/diagnóstico por imagem , Saimiri , Pesquisa Translacional Biomédica
16.
Commun Biol ; 4(1): 125, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504896

RESUMO

Vision restoration is an ideal medical application for optogenetics, because the eye provides direct optical access to the retina for stimulation. Optogenetic therapy could be used for diseases involving photoreceptor degeneration, such as retinitis pigmentosa or age-related macular degeneration. We describe here the selection, in non-human primates, of a specific optogenetic construct currently tested in a clinical trial. We used the microbial opsin ChrimsonR, and showed that the AAV2.7m8 vector had a higher transfection efficiency than AAV2 in retinal ganglion cells (RGCs) and that ChrimsonR fused to tdTomato (ChR-tdT) was expressed more efficiently than ChrimsonR. Light at 600 nm activated RGCs transfected with AAV2.7m8 ChR-tdT, from an irradiance of 1015 photons.cm-2.s-1. Vector doses of 5 × 1010 and 5 × 1011 vg/eye transfected up to 7000 RGCs/mm2 in the perifovea, with no significant immune reaction. We recorded RGC responses from a stimulus duration of 1 ms upwards. When using the recorded activity to decode stimulus information, we obtained an estimated visual acuity of 20/249, above the level of legal blindness (20/400). These results lay the groundwork for the ongoing clinical trial with the AAV2.7m8 - ChR-tdT vector for vision restoration in patients with retinitis pigmentosa.


Assuntos
Optogenética , Estimulação Luminosa , Degeneração Retiniana/terapia , Visão Ocular/fisiologia , Animais , Equipamentos e Provisões , Feminino , Humanos , Macaca fascicularis , Masculino , Optogenética/instrumentação , Optogenética/métodos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/instrumentação , Estimulação Luminosa/métodos , Primatas , Degeneração Retiniana/fisiopatologia , Degeneração Retiniana/reabilitação , Terapias em Estudo/instrumentação , Terapias em Estudo/métodos
17.
Psychopharmacology (Berl) ; 238(2): 559-567, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33169200

RESUMO

RATIONALE: Ketamine, a well-known general dissociative anesthetic agent that is a non-competitive antagonist of the N-methyl-D-aspartate receptor, perturbs the perception of elapsed time and the expectation of upcoming events. OBJECTIVE: The objective of this study was to determine the influence of ketamine on temporal expectation in the rhesus monkey. METHODS: Two rhesus monkeys were trained to make a saccade between a central warning stimulus and an eccentric visual target that served as imperative stimulus. The delay between the warning and the imperative stimulus could take one of four different values randomly with the same probability (variable foreperiod paradigm). During experimental sessions, a subanesthetic low dose of ketamine (0.25-0.35 mg/kg) was injected i.m. and the influence of the drug on movement latency was measured. RESULTS: We found that in the control conditions, saccadic latencies strongly decreased with elapsed time before the appearance of the visual target showing that temporal expectation built up during the delay period between the warning and the imperative stimulus. However, after ketamine injection, temporal expectation was significantly reduced in both subjects. In addition, ketamine also increased average movement latency but this effect could be dissociated from the reduction of temporal expectation. CONCLUSION: In conclusion, a subanesthetic dose of ketamine could have two independent effects: increasing reaction time and decreasing temporal expectation. This alteration of temporal expectation could explain cognitive deficits observed during ketamine use.


Assuntos
Anestésicos Dissociativos/farmacologia , Ketamina/farmacologia , Motivação/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Movimentos Sacádicos/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Macaca mulatta , Masculino , Distribuição Aleatória
18.
Brain ; 144(2): 504-514, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33279957

RESUMO

Freezing of gait is a challenging sign of Parkinson's disease associated with disease severity and progression and involving the mesencephalic locomotor region. No predictive factor of freezing has been reported so far. The primary objective of this study was to identify predictors of freezing occurrence at 5 years. In addition, we tested whether functional connectivity of the mesencephalic locomotor region could explain the oculomotor factors at baseline that were predictive of freezing onset. We performed a prospective study investigating markers (parkinsonian signs, cognitive status and oculomotor recordings, with a particular focus on the antisaccade latencies) of disease progression at baseline and at 5 years. We identified two groups of patients defined by the onset of freezing at 5 years of follow-up; the 'Freezer' group was defined by the onset of freezing in the ON medication condition during follow-up (n = 17), while the 'non-Freezer' group did not (n = 8). Whole brain resting-state functional MRI was recorded at baseline to determine how antisaccade latencies were associated with connectivity of the mesencephalic locomotor region networks in patients compared to 25 age-matched healthy volunteers. Results showed that, at baseline and compared to the non-Freezer group, the Freezer group had equivalent motor or cognitive signs, but increased antisaccade latencies (P = 0.008). The 5-year course of freezing of gait was correlated with worsening antisaccade latencies (P = 0.0007). Baseline antisaccade latencies was also predictive of the freezing onset (χ2 = 0.008). Resting state connectivity of mesencephalic locomotor region networks correlated with (i) antisaccade latency differently in patients and healthy volunteers at baseline; and (ii) the further increase of antisaccade latency at 5 years. We concluded that antisaccade latency is a predictive marker of the 5-year onset of freezing of gait. Our study suggests that functional networks associated with gait and gaze control are concurrently altered during the course of the disease.


Assuntos
Encéfalo/fisiopatologia , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/fisiopatologia , Doença de Parkinson/complicações , Movimentos Sacádicos , Idoso , Biomarcadores , Mapeamento Encefálico , Tecnologia de Rastreamento Ocular , Feminino , Transtornos Neurológicos da Marcha/complicações , Humanos , Imageamento por Ressonância Magnética , Masculino , Mesencéfalo/fisiopatologia , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia , Sensibilidade e Especificidade
19.
Front Physiol ; 11: 1042, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973560

RESUMO

Since the late 2010s, Transcranial Ultrasound Stimulation (TUS) has been used experimentally to carryout safe, non-invasive stimulation of the brain with better spatial resolution than Transcranial Magnetic Stimulation (TMS). This innovative stimulation method has emerged as a novel and valuable device for studying brain function in humans and animals. In particular, single pulses of TUS directed to oculomotor regions have been shown to modulate visuomotor behavior of non-human primates during 100 ms ultrasound pulses. In the present study, a sustained effect was induced by applying 20-s trains of neuronavigated repetitive Transcranial Ultrasound Stimulation (rTUS) to oculomotor regions of the frontal cortex in three non-human primates performing an antisaccade task. With the help of MRI imaging and a frame-less stereotactic neuronavigation system (SNS), we were able to demonstrate that neuronavigated TUS (outside of the MRI scanner) is an efficient tool to carry out neuromodulation procedures in non-human primates. We found that, following neuronavigated rTUS, saccades were significantly modified, resulting in shorter latencies compared to no-rTUS trials. This behavioral modulation was maintained for up to 20 min. Oculomotor behavior returned to baseline after 18-31 min and could not be significantly distinguished from the no-rTUS condition. This study is the first to show that neuronavigated rTUS can have a persistent effect on monkey behavior with a quantified return-time to baseline. The specificity of the effects could not be explained by auditory confounds.

20.
Sci Rep ; 10(1): 13933, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811896

RESUMO

Myoclonus-dystonia (MD) is a syndrome characterized by myoclonus of subcortical origin and dystonia, frequently associated with psychiatric comorbidities. The motor and psychiatric phenotypes of this syndrome likely result from cortico-striato-thamalo-cerebellar-cortical pathway dysfunction. We hypothesized that reactive and proactive inhibitory control may be altered in these patients. Using the Stop Signal Task, we assessed reactive and proactive inhibitory control in MD patients with (n = 12) and without (n = 21) deep brain stimulation of the globus pallidus interna and compared their performance to matched healthy controls (n = 24). Reactive inhibition was considered as the ability to stop an already initiated action and measured using the stop signal reaction time. Proactive inhibition was assessed through the influence of several consecutive GO or STOP trials on decreased response time or inhibitory process facilitation. The proactive inhibition was solely impaired in unoperated MD patients. Patients with deep brain stimulation showed impairment in reactive inhibition, independent of presence of obsessive-compulsive disorders. This impairment in reactive inhibitory control correlated with intrinsic severity of myoclonus (i.e. pre-operative score). The results point to a dissociation in reactive and proactive inhibitory control in MD patients with and without deep brain stimulation of the globus pallidus interna.


Assuntos
Distúrbios Distônicos/fisiopatologia , Adulto , Estimulação Encefálica Profunda/métodos , Transtornos Dissociativos/fisiopatologia , Distonia/fisiopatologia , Feminino , Globo Pálido/fisiopatologia , Humanos , Inibição Psicológica , Masculino , Mioclonia/fisiopatologia , Inibição Proativa , Tempo de Reação/fisiologia , Inibição Reativa , Transmissão Sináptica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...