Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Rep ; 13(1): 21675, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065990

RESUMO

In the last decade, clinical studies have investigated the clinical relevance of circulating cell-free-DNA (ccfDNA) as a diagnostic and prognosis tool in various diseases including cancers. However, limited knowledge on ccfDNA biology restrains its full development in the clinical practice. To improve our understanding, we evaluated the impact of the circadian rhythm on ccfDNA release in healthy subjects over a 24-h period. 10 healthy female subjects underwent blood sampling at 8am and 20 healthy male subjects underwent serial blood sampling (8:00 AM, 9:00 AM, 12:00 PM, 4:00 PM, 8:00 PM, 12:00 AM, 4 AM (+ 1 Day) and 8 AM (+ 1 Day)). We performed digital droplet-based PCR (ddPCR) assays to target 2 DNA fragments (69 & 243 bp) located in the KRAS gene to determine the ccfDNA concentration and fragmentation profile. As control, half of the samples were re-analyzed by capillary miniaturized electrophoresis (BIAbooster system). Overall, we did not detect any influence of the circadian rhythm on ccfDNA release. Instead, we observed a decrease in the ccfDNA concentration after meal ingestion, suggesting either a post-prandial effect or a technical detection bias due to a higher plasma load in lipids and triglycerides. We also noticed a potential effect of gender, weight and creatinine levels on ccfDNA concentration.


Assuntos
Ácidos Nucleicos Livres , Humanos , Masculino , Feminino , Voluntários Saudáveis , Prognóstico , Reação em Cadeia da Polimerase , DNA , Ritmo Circadiano
2.
Clin Chem ; 68(6): 782-793, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323926

RESUMO

BACKGROUND: No circulating biomarker is available for endometrial carcinoma (EC). We aimed to identify DNA positions universally hypermethylated in EC, and to develop a digital droplet PCR (ddPCR) assay for detection of hypermethylated circulating tumor DNA (meth-ctDNA) in plasma from patients with EC. METHODS: DNA positions hypermethylated in EC, and without unspecific hypermethylation in tissue/cell types releasing circulating cell-free DNA in plasma, were identified in silico from TCGA/Gene Expression Omnibus (GEO) data. A methylation-specific ddPCR (meth-ddPCR) assay following bisulfite conversion of DNA extracted from plasma was optimized for detection of meth-ctDNA according to dMIQE guidelines. Performances were validated on a retrospective cohort (n = 78 tumors, n = 30 tumor-adjacent tissues), a prospective pilot cohort (n = 33 stage I-IV patients), and 55 patients/donors without cancer. RESULTS: Hypermethylation of zinc finger and SCAN domain containing 12 (ZSCAN12) and/or oxytocin (OXT) classified EC samples from multiple noncancer samples with high diagnostic specificity/sensitivity [>97%; area under the curve (AUC) = 0.99; TCGA/GEO tissues/blood samples]. These results were confirmed in the independent retrospective cohort (AUC = 0.99). Meth-ddPCR showed a high analytical specificity (limit of blank = 2) and sensitivity (absolute lower threshold of detection = 50 pgmethDNA/mLplasma). In the pilot cohort, meth-ctDNA was detected in pretreatment plasma samples from 9/11 and 5/20 patients with advanced and non-advanced EC, respectively. 2 of 9 patients had ctDNA detected after macroscopic complete surgery and experienced progression within 6 months. No healthy donors had any copy of hypermethylated DNA detected in plasma. CONCLUSIONS: Meth-ddPCR of ZSCAN12/OXT allows a highly specific and sensitive detection of ctDNA in plasma from patients with EC and appears promising for personalized approaches for these patients.


Assuntos
DNA Tumoral Circulante , Neoplasias do Endométrio , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Feminino , Humanos , Reação em Cadeia da Polimerase/métodos , Estudos Prospectivos , Estudos Retrospectivos
3.
Clin Infect Dis ; 75(1): e410-e417, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34894121

RESUMO

BACKGROUND: Approximately 15-30% of hospitalized coronavirus disease 2019 (COVID-19) patients develop acute respiratory distress syndrome, systemic tissue injury, and/or multi-organ failure leading to death in around 45% of cases. There is a clear need for biomarkers that quantify tissue injury, predict clinical outcomes, and guide the clinical management of hospitalized COVID-19 patients. METHODS: We herein report the quantification by droplet-based digital polymerase chain reaction (ddPCR) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNAemia and the plasmatic release of a ubiquitous human intracellular marker, the ribonuclease P (RNase P) in order to evaluate tissue injury and cell lysis in the plasma of 139 COVID-19 hospitalized patients at admission. RESULTS: We confirmed that SARS-CoV-2 RNAemia was associated with clinical severity of COVID-19 patients. In addition, we showed that plasmatic RNase P RNAemia at admission was also highly correlated with disease severity (P < .001) and invasive mechanical ventilation status (P < .001) but not with pulmonary severity. Altogether, these results indicate a consequent cell lysis process in severe and critical patients but not systematically due to lung cell death. Finally, the plasmatic RNase P RNA value was also significantly associated with overall survival. CONCLUSIONS: Viral and ubiquitous blood biomarkers monitored by ddPCR could be useful for the clinical monitoring and the management of hospitalized COVID-19 patients. Moreover, these results could pave the way for new and more personalized circulating biomarkers in COVID-19, and more generally in infectious diseases, specific from each patient organ injury profile.


Assuntos
COVID-19 , Biomarcadores , COVID-19/diagnóstico , Humanos , Prognóstico , RNA , Ribonuclease P , SARS-CoV-2
4.
Eur J Cancer ; 159: 24-33, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34731746

RESUMO

BACKGROUND: In non-metastatic colorectal cancer (CRC), we evaluated prospectively the pertinence of longitudinal detection and quantification of circulating tumor DNA (ctDNA) as a prognostic marker of recurrence. METHOD: The presence of ctDNA was assessed from plasma collected before and after surgery for 184 patients classified as stage II or III and at each visit during 3-4 years of follow-up. The ctDNA analysis was performed by droplet-based digital polymerase chain reaction, targeting mutation and methylation markers, blindly from the clinical outcomes. Multivariate analyses were adjusted on age, gender, stage, and adjuvant chemotherapy. RESULTS: Before surgery, 27.5% of patients were positive for ctDNA detection. The rate of recurrence was 32.7% and 11.6% in patients with or without detectable ctDNA respectively (P = 0.001). Time to recurrence (TTR) was significantly shorter in patients with detectable ctDNA before (adjusted hazard ratio [HR] = 3.58, 95% confidence interval [CI] 1.71-7.47) or immediately after surgery (adjusted HR = 3.22, 95% CI 1.32-7.89). The TTR was significantly shorter in patients with detectable ctDNA during the early postoperative follow-up (1-6 months) (adjusted HR = 5, 95% CI 1.9-12.9). Beyond this period, ctDNA remained a prognostic marker with a median anticipated diagnosis of recurrence of 13.1 weeks (interquartile range 28 weeks) when compared to imaging follow-up. The rate of ctDNA+ might be underestimated knowing that consensus pre-analytical conditions were not described at initiation of the study. CONCLUSION: This prospective study confirms the relevance of ctDNA as a recurrence risk factor in stage II and III CRC before surgery and as a marker of minimal residual disease after surgery that may predict recurrence several months before imaging techniques.


Assuntos
Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Recidiva Local de Neoplasia/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Prognóstico , Estudos Prospectivos
5.
Front Oncol ; 11: 639675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094923

RESUMO

Background: Cellular-cell free-DNA (ccfDNA) is being explored as a diagnostic and prognostic tool for various diseases including cancer. Beyond the evaluation of the ccfDNA mutational status, its fragmentation has been investigated as a potential cancer biomarker in several studies. However, probably due to a lack of standardized procedures dedicated to preanalytical and analytical processing of plasma samples, contradictory results have been published. Methods: ddPCR assays allowing the detection of KRAS wild-type and mutated sequences (KRAS p.G12V, pG12D, and pG13D) were designed to target different fragments sizes. Once validated on fragmented and non-fragmented DNA extracted from cancer cell lines, these assays were used to investigate the influence of the extraction methods on the non-mutated and mutated ccfDNA integrity reflected by the DNA integrity index (DII). The DII was then analyzed in two prospective cohorts of metastatic colorectal cancer patients (RASANC study n = 34; PLACOL study n = 12) and healthy subjects (n = 49). Results and Discussion: Our results demonstrate that ccfDNA is highly fragmented in mCRC patients compared with healthy individuals. These results strongly suggest that the characterization of ccfDNA integrity hold great promise toward the development of a universal biomarker for the follow-up of mCRC patients. Furthermore, they support the importance of standardization of sample handling and processing in such analysis.

6.
Clin Infect Dis ; 73(9): e2890-e2897, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32803231

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global public health problem that has already caused more than 662 000 deaths worldwide. Although the clinical manifestations of COVID-19 are dominated by respiratory symptoms, some patients present other severe damage such as cardiovascular, renal and liver injury, and/or multiple organ failure, suggesting a spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in blood. Recent ultrasensitive polymerase chain reaction (PCR) technology now allows absolute quantification of nucleic acids in plasma. We intend to use the droplet-based digital PCR technology to obtain sensitive detection and precise quantification of plasma SARS-CoV-2 viral load (SARS-CoV-2 RNAemia) in hospitalized COVID-19 patients. METHODS: Fifty-eight consecutive COVID-19 patients with pneumonia 8 to 12 days after onset of symptoms and 12 healthy controls were analyzed. Disease severity was categorized as mild to moderate in 17 patients, severe in 16, and critical in 26. Plasma SARS-CoV-2 RNAemia was quantified by droplet digital Crystal Digital PCR next-generation technology (Stilla Technologies, Villejuif, France). RESULTS: Overall, SARS-CoV-2 RNAemia was detected in 43 (74.1%) patients. Prevalence of positive SARS-CoV-2 RNAemia correlated with disease severity, ranging from 53% in mild-to-moderate patients to 88% in critically ill patients (P = .036). Levels of SARS-CoV-2 RNAemia were associated with severity (P = .035). Among 9 patients who experienced clinical deterioration during follow-up, 8 had positive SARS-CoV-2 RNAemia at baseline, whereas only 1 critical patient with undetectable SARS-CoV-2 RNAemia at the time of analysis died at day 27. CONCLUSION: SARS-CoV-2 RNAemia measured by droplet-based digital PCR constitutes a promising prognosis biomarker in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Estado Terminal , Humanos , RNA Viral , Índice de Gravidade de Doença
7.
Acta Cytol ; 63(6): 449-455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31091522

RESUMO

Liquid biopsy provides the opportunity of detecting, analyzing and monitoring cancer in various body effluents such as blood or urine instead of a fragment of cancer tissue. It is composed of different biological matrices such as circulating tumor cells (CTCs), cell free nucleic acids, exosomes or tumors "educated platelets." In addition to representing a non- or minimally invasive procedure, it should represent a better view of tumor heterogeneity and allows for real-time monitoring of cancer evolution. Recent technological and molecular advances, greatly facilitated by the use of microfluidics in many cases, have permitted large progresses both in our ability to purify and analyze liquid biopsy components. In particular, the great developments of droplet-based digital PCR and the various optimizations of next generation sequencing technologies are central to the several validations of CTC-free DNA as a strong cancer biomarker. However, complete adoption of liquid biopsy in clinics will require pursuing recent efforts in the standardization of procedures both on the pre-analytical and analytical aspects.


Assuntos
Biomarcadores Tumorais/análise , DNA Tumoral Circulante/sangue , Biópsia Líquida/métodos , Recidiva Local de Neoplasia/diagnóstico , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/química , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/isolamento & purificação , Biópsia por Agulha Fina , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/isolamento & purificação , DNA Tumoral Circulante/isolamento & purificação , Exossomos/química , Humanos , Biópsia Líquida/normas , Monitorização Fisiológica , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células Neoplásicas Circulantes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...