Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 545-555, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227091

RESUMO

In plant cell walls, covalent bonds between polysaccharides and lignin increase recalcitrance to degradation. Ester bonds are known to exist between glucuronic acid moieties on glucuronoxylan and lignin, and these can be cleaved by glucuronoyl esterases (GEs) from carbohydrate esterase family 15 (CE15). GEs are found in both bacteria and fungi, and some microorganisms also encode multiple GEs, although the reason for this is still not fully clear. The fungus Lentithecium fluviatile encodes three CE15 enzymes, of which two have previously been heterologously produced, although neither was active on the tested model substrate. Here, one of these, LfCE15C, has been investigated in detail using a range of model and natural substrates and its structure has been solved using X-ray crystallography. No activity could be verified on any tested substrate, but biophysical assays indicate an ability to bind to complex carbohydrate ligands. The structure further suggests that this enzyme, which possesses an intact catalytic triad, might be able to bind and act on more extensively decorated xylan chains than has been reported for other CE15 members. It is speculated that rare glucuronoxylans decorated at the glucuronic acid moiety may be the true targets of LfCE15C and other CE15 family members with similar sequence characteristics.


Assuntos
Esterases , Lignina , Esterases/química , Esterases/metabolismo , Lignina/metabolismo , Xilanos , Polissacarídeos , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Especificidade por Substrato
2.
Biochemistry ; 60(27): 2206-2220, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34180241

RESUMO

The hyperthermophilic bacterium Caldicellulosiruptor kristjansonii encodes an unusual enzyme, CkXyn10C-GE15A, which incorporates two catalytic domains, a xylanase and a glucuronoyl esterase, and five carbohydrate-binding modules (CBMs) from families 9 and 22. The xylanase and glucuronoyl esterase catalytic domains were recently biochemically characterized, as was the ability of the individual CBMs to bind insoluble polysaccharides. Here, we further probed the abilities of the different CBMs from CkXyn10C-GE15A to bind to soluble poly- and oligosaccharides using affinity gel electrophoresis, isothermal titration calorimetry, and differential scanning fluorimetry. The results revealed additional binding properties of the proteins compared to the former studies on insoluble polysaccharides. Collectively, the results show that all five CBMs have their own distinct binding preferences and appear to complement each other and the catalytic domains in targeting complex cell wall polysaccharides. Additionally, through renewed efforts, we have achieved partial structural characterization of this complex multidomain protein. We have determined the structures of the third CBM9 domain (CBM9.3) and the glucuronoyl esterase (GE15A) by X-ray crystallography. CBM9.3 is the second CBM9 structure determined to date and was shown to bind oligosaccharide ligands at the same site but in a different binding mode compared to that of the previously determined CBM9 structure from Thermotoga maritima. GE15A represents a unique intermediate between reported fungal and bacterial glucuronoyl esterase structures as it lacks two inserted loop regions typical of bacterial enzymes and a third loop has an atypical structure. We also report small-angle X-ray scattering measurements of the N-terminal CBM22.1-CBM22.2-Xyn10C construct, indicating a compact arrangement at room temperature.


Assuntos
Proteínas de Bactérias/química , Caldicellulosiruptor/enzimologia , Esterases/química , Xilosidases/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Caldicellulosiruptor/química , Caldicellulosiruptor/metabolismo , Cristalografia por Raios X , Estabilidade Enzimática , Esterases/metabolismo , Modelos Moleculares , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Conformação Proteica , Temperatura , Xilosidases/metabolismo
3.
Nanoscale ; 13(18): 8467-8473, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33984105

RESUMO

Metal ion-induced self-assembly (SA) of proteins into higher-order structures can provide new, dynamic nano-assemblies. Here, the synthesis and characterization of a human insulin (HI) analog modified at LysB29 with the tridentate chelator 2,2':6',2''-terpyridine (Tpy) is described. SA of this new insulin analog (LysB29Tpy-HI) in the presence of the metal ions Fe2+ and Eu3+ at different concentrations was studied in solution by fluorescence luminescence and CD spectroscopy, dynamic light scattering, and small-angle X-ray scattering, while surface assembly was probed by AFM. Unique oligomerization was observed in solution, as Fe2+ yielded small magenta-colored discrete non-native assemblies, while Eu3+ caused the formation of large fractal assemblies. Binding of both metal ions to Tpy was demonstrated spectroscopically, and emission lifetime experiments revealed a distinct Eu3+ coordination geometry that included two water molecules. SAXS suggested that LysB29Tpy-HI with Fe2+ oligomerized to a discrete, roughly octameric species, while LysB29Tpy-HI with Eu3+ gave very large assemblies that could be modelled as fractals. The fractal dimensionality increased with the Eu3+ concentration. We propose that this is a consequence of Eu3+ binding to both Tpy and to free carboxylic acid groups on the insulin surface. LysB29Tpy-HI maintained insulin receptor affinity, and showed extended blood glucose lowering and plasma concentration after subcutaneous injection in rats. The combination of metal ion directed SA and native SA provides control of nano-scale fractal dimensionality and points towards use in therapeutics.


Assuntos
Fractais , Insulina , Animais , Ratos , Espalhamento a Baixo Ângulo , Análise Espectral , Difração de Raios X
4.
N Biotechnol ; 62: 68-78, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33524585

RESUMO

The use of retaining glycoside hydrolases as synthetic tools for glycochemistry is highly topical and the focus of considerable research. However, due to the incomplete identification of the molecular determinants of the transglycosylation/hydrolysis partition (t/h), rational engineering of retaining glycoside hydrolases to create transglycosylases remains challenging. Therefore, to understand better the factors that underpin transglycosylation in a GH51 retaining α-l-arabinofuranosidase from Thermobacillus xylanilyticus, the investigation of this enzyme's active site was pursued. Specifically, the properties of two mutants, F26L and L352M, located in the vicinity of the active site are described, using kinetic and 3D structural analyses and molecular dynamics simulations. The results reveal that the presence of L352M in the context of a triple mutant (also containing R69H and N216W) generates changes both in the donor and acceptor subsites, the latter being the result of a domino-like effect. Overall, the mutant R69H-N216W-L352M displays excellent transglycosylation activity (70 % yield, 78 % transfer rate and reduced secondary hydrolysis of the product). In the course of this study, the central role played by the conserved R69 residue was also reaffirmed. The mutation R69H affects both the catalytic nucleophile and the acid/base, including their flexibility, and has a determinant effect on the t/h partition. Finally, the results reveal that increased loop flexibility in the acceptor subsites creates new interactions with the acceptor, in particular with a hydrophobic binding platform composed of N216W, W248 and W302.


Assuntos
Glicosídeo Hidrolases/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosilação , Hidrólise , Modelos Moleculares , Mutação
5.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32444471

RESUMO

The maltooligosaccharide (MOS) utilization locus in Lactobacillus acidophilus NCFM, a model for human small-intestine lactobacilli, encodes three glycoside hydrolases (GHs): a putative maltogenic α-amylase of family 13, subfamily 20 (LaGH13_20), a maltose phosphorylase of GH65 (LaGH65), and a family 13, subfamily 31, member (LaGH13_31B), annotated as a 1,6-α-glucosidase. Here, we reveal that LaGH13_31B is a 1,4-α-glucosyltransferase that disproportionates MOS with a degree of polymerization of ≥2, with a preference for maltotriose. Kinetic analyses of the three GHs encoded by the MOS locus revealed that the substrate preference of LaGH13_31B toward maltotriose complements the ~40-fold lower kcat of LaGH13_20 toward this substrate, thereby enhancing the conversion of odd-numbered MOS to maltose. The concerted action of LaGH13_20 and LaGH13_31B confers the efficient conversion of MOS to maltose that is phosphorolyzed by LaGH65. Structural analyses revealed the presence of a flexible elongated loop that is unique for a previously unexplored clade of GH13_31, represented by LaGH13_31B. The identified loop insertion harbors a conserved aromatic residue that modulates the activity and substrate affinity of the enzyme, thereby offering a functional signature of this clade, which segregates from 1,6-α-glucosidases and sucrose isomerases previously described within GH13_31. Genomic analyses revealed that the LaGH13_31B gene is conserved in the MOS utilization loci of lactobacilli, including acidophilus cluster members that dominate the human small intestine.IMPORTANCE The degradation of starch in the small intestine generates short linear and branched α-glucans. The latter are poorly digestible by humans, rendering them available to the gut microbiota, e.g., lactobacilli adapted to the small intestine and considered beneficial to health. This study unveils a previously unknown scheme of maltooligosaccharide (MOS) catabolism via the concerted activity of an 1,4-α-glucosyltransferase together with a classical hydrolase and a phosphorylase. The intriguing involvement of a glucosyltransferase likely allows the fine-tuning of the regulation of MOS catabolism for optimal harnessing of this key metabolic resource in the human small intestine. The study extends the suite of specificities that have been identified in GH13_31 and highlights amino acid signatures underpinning the evolution of 1,4-α-glucosyl transferases that have been recruited in the MOS catabolism pathway in lactobacilli.


Assuntos
Proteínas de Bactérias/genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Lactobacillus acidophilus/genética , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Lactobacillus acidophilus/metabolismo
6.
J Biol Chem ; 294(52): 19978-19987, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31740581

RESUMO

Glucuronoyl esterases (GEs) catalyze the cleavage of ester linkages between lignin and glucuronic acid moieties on glucuronoxylan in plant biomass. As such, GEs represent promising biochemical tools in industrial processing of these recalcitrant resources. However, details on how GEs interact and catalyze degradation of their natural substrates are sparse, calling for thorough enzyme structure-function studies. Presented here is a structural and mechanistic investigation of the bacterial GE OtCE15A. GEs belong to the carbohydrate esterase family 15 (CE15), which is in turn part of the larger α/ß-hydrolase superfamily. GEs contain a Ser-His-Asp/Glu catalytic triad, but the location of the catalytic acid in GEs has been shown to be variable, and OtCE15A possesses two putative catalytic acidic residues in the active site. Through site-directed mutagenesis, we demonstrate that these residues are functionally redundant, possibly indicating the evolutionary route toward new functionalities within the family. Structures determined with glucuronate, in both native and covalently bound intermediate states, and galacturonate provide insights into the catalytic mechanism of CE15. A structure of OtCE15A with the glucuronoxylooligosaccharide 23-(4-O-methyl-α-d-glucuronyl)-xylotriose (commonly referred to as XUX) shows that the enzyme can indeed interact with polysaccharides from the plant cell wall, and an additional structure with the disaccharide xylobiose revealed a surface binding site that could possibly indicate a recognition mechanism for long glucuronoxylan chains. Collectively, the results indicate that OtCE15A, and likely most of the CE15 family, can utilize esters of glucuronoxylooligosaccharides and support the proposal that these enzymes work on lignin-carbohydrate complexes in plant biomass.


Assuntos
Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Lignina/metabolismo , Verrucomicrobia/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Dissacarídeos/química , Dissacarídeos/metabolismo , Esterases/química , Esterases/genética , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Cinética , Lignina/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Especificidade por Substrato
7.
J Biol Chem ; 294(45): 17117-17130, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31471321

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are redox-enzymes involved in biomass degradation. All characterized LPMOs possess an active site of two highly conserved histidine residues coordinating a copper ion (the histidine brace), which are essential for LPMO activity. However, some protein sequences that belong to the AA9 LPMO family display a natural N-terminal His to Arg substitution (Arg-AA9). These are found almost entirely in the phylogenetic fungal class Agaricomycetes, associated with wood decay, but no function has been demonstrated for any Arg-AA9. Through bioinformatics, transcriptomic, and proteomic analyses we present data, which suggest that Arg-AA9 proteins could have a hitherto unidentified role in fungal degradation of lignocellulosic biomass in conjunction with other secreted fungal enzymes. We present the first structure of an Arg-AA9, LsAA9B, a naturally occurring protein from Lentinus similis The LsAA9B structure reveals gross changes in the region equivalent to the canonical LPMO copper-binding site, whereas features implicated in carbohydrate binding in AA9 LPMOs have been maintained. We obtained a structure of LsAA9B with xylotetraose bound on the surface of the protein although with a considerably different binding mode compared with other AA9 complex structures. In addition, we have found indications of protein phosphorylation near the N-terminal Arg and the carbohydrate-binding site, for which the potential function is currently unknown. Our results are strong evidence that Arg-AA9s function markedly different from canonical AA9 LPMO, but nonetheless, may play a role in fungal conversion of lignocellulosic biomass.


Assuntos
Histidina , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Ligantes , Oxigenases de Função Mista/genética , Modelos Moleculares , Fosforilação , Filogenia
8.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 6): 399-404, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31204685

RESUMO

ß-1,4-Galactanases are glycoside hydrolases that are involved in the degradation of pectin and belong to family 53 in the classification of glycoside hydrolases. Previous studies have elucidated the structures of several fungal and two bacterial galactanases, while biochemical studies have indicated differences in the product profiles of different members of the family. Structural studies of ligand complexes have to date been limited to the bacterial members of the family. Here, the first structure of a fungal galactanase in complex with a disaccharide is presented. Galactobiose binds to subsites -1 and -2, thus improving our understanding of ligand binding to galactanases.


Assuntos
Aspergillus/enzimologia , Dissacarídeos/química , Dissacarídeos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Cristalografia por Raios X , Conformação Proteica , Especificidade por Substrato
9.
Cell Chem Biol ; 26(2): 191-202.e6, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30503284

RESUMO

We have characterized the structure and dynamics of the carbohydrate-modifying enzyme Paenibacillus nanensis xanthan lyase (PXL) involved in the degradation of xanthan by X-ray crystallography, small-angle X-ray scattering, and hydrogen/deuterium exchange mass spectrometry. Unlike other xanthan lyases, PXL is specific for both unmodified mannose and pyruvylated mannose, which we find is correlated with structural differences in the substrate binding groove. The structure of the full-length enzyme reveals two additional C-terminal modules, one of which belongs to a new non-catalytic carbohydrate binding module family. Ca2+ are critical for the activity and conformation of PXL, and we show that their removal by chelating agents results in localized destabilization/unfolding of particularly the C-terminal modules. We use the structure and the revealed impact of Ca2+ coordination on conformational dynamics to guide the engineering of PXL variants with increased activity and stability in a chelating environment, thus expanding the possibilities for industrial applications of PXL.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Liases/metabolismo , Paenibacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cálcio/química , Cálcio/metabolismo , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/genética , Domínio Catalítico , Cristalografia por Raios X , Cinética , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
Carbohydr Res ; 469: 55-59, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30296642

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are industrial enzymes which are gaining use in second generation bioethanol production from lignocellulose by acting in synergy with glycoside hydrolases. Here we present the X-ray crystal structure of an AA9 fungal LPMO from Aspergillus fumigatus and a variant which has been shown to have better performance at elevated temperatures. Based on the structures, thermal denaturation data and theoretical calculations, we provide a suggestion for the structural basis of the improved stability.


Assuntos
Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Engenharia de Proteínas , Temperatura , Aspergillus fumigatus/genética , Estabilidade Enzimática/genética , Oxigenases de Função Mista/genética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
11.
Enzyme Microb Technol ; 114: 48-54, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29685353

RESUMO

Carbonic anhydrases (CAs) are extremely fast enzymes, which have attracted much interest in the past due to their medical relevance and their biotechnological potential. An α-type CA gene was isolated from DNA derived from an active hydrothermal vent chimney, in an effort to identify novel CAs with suitable properties for CO2 capture. The gene product was recombinantly produced and characterized, revealing remarkable thermostability, also in the presence of high ionic strength alkaline conditions, which are used in some CO2 capture applications. The Tm was above 90 °C under all tested conditions. The enzyme was crystallized and the structure determined by molecular replacement, revealing a typical bacterial α-type CA non-covalent dimer, but not the disulphide mediated tetramer observed for the hyperthermophilic homologue used for molecular replacement, from Thermovibrio ammonificans. Structural comparison suggests that an increased secondary structure content, increased content of charges on the surface and ionic interactions compared to mesophilic enzymes, may be main structural sources of thermostability, as previously suggested for the homologue from Sulfurihydrogenibium yellowstonense.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Anidrases Carbônicas/química , Fontes Hidrotermais/microbiologia , Sequência de Aminoácidos , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Dimerização , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Metagenoma , Alinhamento de Sequência
12.
Carbohydr Res ; 448: 187-190, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28364950

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) have been found to be key components in microbial (bacterial and fungal) degradation of biomass. They are copper metalloenzymes that degrade polysaccharides oxidatively and act in synergy with glycoside hydrolases. Recently crystallographic studies carried out at pH 5.5 of the LPMO from Lentinus similis belonging to the fungal LPMO family AA9 have provided the first atomic resolution view of substrate-LPMO interactions. The LsAA9A structure presented here determined at pH 3.5 shows significant disorder of the active site in the absence of substrate ligand. Furthermore some differences are also observed in regards to substrate (cellohexaose) binding, although the major interaction with the N-terminal histidine remains unchanged.


Assuntos
Oxigenases de Função Mista/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Domínio Catalítico , Concentração de Íons de Hidrogênio , Lentinula/enzimologia , Ligantes , Oxigenases de Função Mista/química , Modelos Moleculares , Oxirredução , Especificidade por Substrato
13.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 11): 846-852, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27827356

RESUMO

Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is D-glucitol (a synonym for D-sorbitol), although L-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Šresolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with D-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the Tm for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous ß-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio.


Assuntos
Proteínas de Bactérias/química , Bradyrhizobium/química , L-Iditol 2-Desidrogenase/química , Sorbitol/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/enzimologia , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Temperatura Alta , L-Iditol 2-Desidrogenase/genética , L-Iditol 2-Desidrogenase/metabolismo , Modelos Moleculares , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/enzimologia , Sorbitol/metabolismo , Especificidade por Substrato , Termodinâmica
14.
Nat Chem Biol ; 12(4): 298-303, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928935

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.


Assuntos
Celulose/metabolismo , Quitina/metabolismo , Oxigenases de Função Mista/metabolismo , Sequência de Aminoácidos , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Sítios de Ligação , Domínio Catalítico , Cobre/metabolismo , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Lentinula/enzimologia , Lentinula/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Dados de Sequência Molecular , Oligossacarídeos/química , Oxirredução , Especificidade por Substrato
15.
Nat Commun ; 6: 5961, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608804

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are recently discovered enzymes that oxidatively deconstruct polysaccharides. LPMOs are fundamental in the effective utilization of these substrates by bacteria and fungi; moreover, the enzymes have significant industrial importance. We report here the activity, spectroscopy and three-dimensional structure of a starch-active LPMO, a representative of the new CAZy AA13 family. We demonstrate that these enzymes generate aldonic acid-terminated malto-oligosaccharides from retrograded starch and boost significantly the conversion of this recalcitrant substrate to maltose by ß-amylase. The detailed structure of the enzyme's active site yields insights into the mechanism of action of this important class of enzymes.


Assuntos
Ácidos/química , Maltose/química , Oxigenases de Função Mista/química , Oligossacarídeos/química , Polissacarídeos/química , Domínio Catalítico , Celulose/química , Cobre/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Evolução Molecular , Fungos/enzimologia , Genômica , Histidina/química , Oxigênio/química , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Amido , Especificidade por Substrato , beta-Amilase/química
16.
Metallomics ; 6(11): 2090-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25179124

RESUMO

The nuclease domain of colicin E7 metallonuclease (NColE7) contains its active centre at the C-terminus. The mutant ΔN4-NColE7-C* - where the four N-terminal residues including the positively charged K446, R447 and K449 are replaced with eight residues from the GST tag - is catalytically inactive. The crystal structure of this mutant demonstrates that its overall fold is very similar to that of the native NColE7 structure. This implicates the stabilizing effect of the remaining N-terminal sequence on the structure of the C-terminal catalytic site and the essential role of the deleted residues in the mechanism of the catalyzed reaction. Complementary QM/MM calculations on the protein-DNA complexes support the less favourable cleavage by the mutant protein than by NColE7. Furthermore, a water molecule as a possible ligand for the Zn(2+)-ion is proposed to play a role in the catalytic process. These results suggest that the mechanism of the Zn(2+)-containing HNH nucleases needs to be further studied and discussed.


Assuntos
Colicinas/química , Clivagem do DNA , DNA/química , Zinco/química , Sequência de Aminoácidos , Colicinas/metabolismo , Cristalografia , DNA/metabolismo , Escherichia coli , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Zinco/metabolismo
17.
Cryobiology ; 69(1): 163-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25025819

RESUMO

Antifreeze proteins (AFPs) are essential components of many organisms adaptation to cold temperatures. Fish type III AFPs are divided into two groups, SP isoforms being much less active than QAE1 isoforms. Two type III AFPs from Zoarces viviparus, a QAE1 (ZvAFP13) and an SP (ZvAFP6) isoform, are here characterized and their crystal structures determined. We conclude that the higher activity of the QAE1 isoforms cannot be attributed to single residues, but rather a combination of structural effects. Furthermore both ZvAFP6 and ZvAFP13 crystal structures have water molecules around T18 equivalent to the tetrahedral-like waters previously identified in a neutron crystal structure. Interestingly, ZvAFP6 forms dimers in the crystal, with a significant dimer interface. The presence of ZvAFP6 dimers was confirmed in solution by native electrophoresis and gel filtration. To our knowledge this is the first report of dimerization of AFP type III proteins.


Assuntos
Proteínas Anticongelantes Tipo III/metabolismo , Proteínas Anticongelantes Tipo III/ultraestrutura , Dimerização , Perciformes/metabolismo , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Proteínas Anticongelantes Tipo III/genética , Temperatura Baixa , Cristalografia por Raios X , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Alinhamento de Sequência
18.
Biochemistry ; 52(39): 6892-904, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24047404

RESUMO

In most temperate bacteriophages, regulation of the choice of lysogenic or lytic life cycle is controlled by a CI repressor protein. Inhibition of transcription is dependent on a helix-turn-helix motif, often located in the N-terminal domain (NTD), which binds to specific DNA sequences (operator sites). Here the crystal structure of the NTD of the CI repressor from phage TP901-1 has been determined at 1.6 Å resolution, and at 2.6 Å resolution in complex with a 9 bp double-stranded DNA fragment that constitutes a half-site of the OL operator. This N-terminal construct, comprising residues 2-74 of the CI repressor, is monomeric in solution as shown by nuclear magnetic resonance (NMR), small angle X-ray scattering, and gel filtration and is monomeric in the crystal structures. The binding interface between the NTD and the half-site in the crystal is very similar to the interface that can be mapped by NMR in solution with a full palindromic site. The interactions seen in the complexes (in the crystal and in solution) explain the observed affinity for the OR site that is lower than that for the OL site and the specificity for the recognized DNA sequence in comparison to that for other repressors. Compared with many well-studied phage repressor systems, the NTD from TP901-1 CI has a longer extended scaffolding helix that, interestingly, is strongly conserved in putative repressors of Gram-positive pathogens. On the basis of sequence comparisons, we suggest that these bacteria also possess repressor/antirepressor systems similar to that found in phage TP901-1.


Assuntos
Bacteriófagos/química , DNA/metabolismo , Lactococcus/virologia , Ressonância Magnética Nuclear Biomolecular , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sítios de Ligação , DNA/química , Modelos Moleculares , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
Artigo em Inglês | MEDLINE | ID: mdl-23695575

RESUMO

The metallonuclease colicin E7 is a member of the HNH family of endonucleases. It serves as a bacterial toxin in Escherichia coli, protecting the host cell from other related bacteria and bacteriophages by degradation of their chromosomal DNA under environmental stress. Its cell-killing activity is attributed to the nonspecific nuclease domain (NColE7), which possesses the catalytic ßßα-type metal ion-binding HNH motif at its C-terminus. Mutations affecting the positively charged amino acids at the N-terminus of NColE7 (444-576) surprisingly showed no or significantly reduced endonuclease activity [Czene et al. (2013), J. Biol. Inorg. Chem. 18, 309-321]. The necessity of the N-terminal amino acids for the function of the C-terminal catalytic centre poses the possibility of allosteric activation within the enzyme. Precise knowledge of the intramolecular interactions of these residues that affect the catalytic activity could turn NColE7 into a novel platform for artificial nuclease design. In this study, the N-terminal deletion mutant ΔN4-NColE7-C* of the nuclease domain of colicin E7 selected by E. coli was overexpressed and crystallized at room temperature by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.6 Šresolution and could be indexed and averaged in the trigonal space group P3121 or P3221, with unit-cell parameters a = b = 55.4, c = 73.1 Å. Structure determination by molecular replacement is in progress.


Assuntos
Colicinas/química , Colicinas/genética , Escherichia coli/enzimologia , Mutação/genética , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Dados de Sequência Molecular
20.
J Bacteriol ; 194(16): 4249-59, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685275

RESUMO

Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents.


Assuntos
Glucosidases/química , Glucosidases/metabolismo , Lactobacillus acidophilus/enzimologia , Lactobacillus acidophilus/metabolismo , Oligossacarídeos/metabolismo , Probióticos , Sítios de Ligação , Cristalografia por Raios X , Perfilação da Expressão Gênica , Glucosidases/genética , Lactobacillus acidophilus/química , Lactobacillus acidophilus/genética , Óperon , Filogenia , Ligação Proteica , Conformação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Streptococcus mutans/química , Streptococcus mutans/enzimologia , Streptococcus mutans/genética , Streptococcus mutans/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...