Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 39(5): 941-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24700282

RESUMO

The viability of retinal ganglion cells (RGC) is essential for the maintenance of visual function. RGC homeostasis is maintained by the surrounding retinal glial cells, the Müller cells, which buffer the extracellular concentration of neurotransmitters and provide the RGCs with energy. This study evaluates if glucose-deprivation of Müller cells interferes with their ability to remove glutamate from the extracellular space. The human Müller glial cell line, Moorfields/Institute of Ophthalmology-Müller 1, was used to study changes in glutamate uptake. Excitatory amino acid transporter (EAAT) proteins were up-regulated in glucose-deprived Müller cells and glutamate uptake was significantly increased in the absence of glucose. The present findings revealed an up-regulation of EAAT1 and EAAT2 in glucose-deprived Müller cells as well as an increased ability to take up glutamate. Hence, glucose deprivation may result in an increased ability to protect RGCs from glutamate-induced excitotoxicity, whereas malfunction of glutamate uptake in Müller cells may contribute to retinal neurodegeneration.


Assuntos
Células Ependimogliais/fisiologia , Glucose/deficiência , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido D-Aspártico/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Regulação para Cima
2.
Curr Eye Res ; 37(6): 500-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22577768

RESUMO

PURPOSE: Inhibition of VEGF in the eye is an important treatment modality for reducing proliferation and migration of retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). Additionally, previous studies suggest calcium-independent phospholipase A(2) group VIA (iPLA(2)-VIA) to be a potential regulator of cell proliferation and migration, and evidence show abundant expression of iPLA(2)-VIA in RPE cells. The aim of the present study was to evaluate the potential role of iPLA(2)-VIA in VEGF-induced proliferation and migration of RPE cells. MATERIALS AND METHODS: The human RPE cell line, ARPE-19, was used in all assays. To explore the role of iPLA(2)-VIA in VEGF-induced RPE proliferation and migration, iPLA(2)-VIA inhibition by the iPLA(2)-VIA specific inhibitor, bromoenol lactone, was done. RPE cell proliferation and migration were evaluated by measurements of incorporated radioactive thymidine in DNA and by a Boyden chamber technique, respectively. A luciferase assay monitored the VEGF-induced iPLA(2)-VIA transcriptional activity. Western blot analysis and an activity assay were used to detect the protein levels and activity of iPLA(2)-VIA respectively after treatment with VEGF. RESULTS: RPE cells treated with VEGF showed significant increased proliferation and migration. Furthermore, inhibition of iPLA(2)-VIA significantly reduced the spontaneous proliferation and migration as well as the VEGF-induced proliferation and migration. Finally, inhibition of iPLA(2)-VIA reduced the VEGF-induced iPLA(2)-VIA-activity, -protein level, and -promoter activity. CONCLUSIONS: A significant interaction between VEGF and iPLA(2)-VIA in the regulation of RPE cells appears to be relevant in elucidating the exact mechanisms of action in the proliferative and migratory phenotype of RPE cells in AMD.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fosfolipases A2 do Grupo VI/metabolismo , Epitélio Pigmentado da Retina/citologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Western Blotting , Linhagem Celular , Replicação do DNA , Fosfolipases A2 do Grupo VI/antagonistas & inibidores , Humanos , Naftalenos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Pironas/farmacologia , Epitélio Pigmentado da Retina/enzimologia , Ativação Transcricional , Regulação para Cima
3.
Cell Physiol Biochem ; 26(6): 809-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21220912

RESUMO

Platinum compounds are used in the treatment of cancer. We demonstrate that cisplatin-induced (10 µM) apoptosis (caspase-3 activity) is pronounced within 18 hours in non-adherent Ehrlich ascites tumour cells (EATC), whereas there is no increase in caspase-3 activity in the adherent Ehrlich Lettré ascites tumour cells (ELA). Loss of KCl and cell shrinkage are hallmarks in apoptosis and has been shown in EATC. However, we find no reduction in cell volume and only a minor loss of K(+) which is accompanied by net uptake of Na(+) following 18 hours cisplatin exposure in ELA. Glutathione and taurine have previously been demonstrated to protect cells from apoptosis. We find, however, that increase or decrease in the cellular content of glutathione and taurine has no effect on cisplatin-induced cell death in EATC and ELA. Nevertheless, knock-down of the taurine transporter TauT leads to a significant increase in apoptosis in ELA following cisplatin exposure. We find that cytosolic accumulation of cisplatin is similar in EATC and ELA. However, the nuclear accumulation and DNA-binding of cisplatin is significant lower in ELA compared to EATC. We suggest three putative reasons for the observed cisplatin insensitivity in the adherent tumor cells (ELA) compared to the non-adherent tumor cells (EATC): less nuclear cisplatin accumulation, increased TauT activity, and decreased anion and water loss.


Assuntos
Antineoplásicos/toxicidade , Apoptose , Cisplatino/toxicidade , Animais , Caspase 3/metabolismo , Tamanho Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , MicroRNAs/metabolismo , Potássio/metabolismo , Taurina/metabolismo , Células Tumorais Cultivadas
4.
APMIS ; 117(7): 500-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19594490

RESUMO

Collagenous colitis (CC) is an inflammatory bowel disease of unknown aetiology and pathogenesis. In ulcerative colitis and Crohn's disease, prostaglandins may be involved in the pathogenesis of inflammation, and increased expression of cyclo-oxygenase-2 (COX-2) has been detected. The purpose of this study was to examine the presence and cellular localization of COX-2 in colonic mucosa of patients with CC. Using immunohistochemistry, immunoflouresence and Western blot analysis, COX-2 expression was evaluated in colonic mucosal biopsies from 10 patients with active untreated CC, and compared with samples from eight normal controls, and samples from eight patients with ulcerative colitis or Crohn's disease. Specimens from patients with CC expressed COX-2 protein in increased amounts compared with controls, but similar to patients with ulcerative colitis and Crohn's disease. COX-2 expression was localized to the mononuclear cells of the lamina propria. COX-2 expression was most evident in macrophages. Co-localization of COX-2 and macrophages was increased in number in comparison with controls. In conclusion COX-2 is expressed in increased amounts primarily in the macrophage subpopulation of the inflammatory infiltrate of lamina propria in CC. Increased recruitment of macrophages, increased expression of COX-2 and increased prostaglandin synthesis may be involved in the pathogenesis of CC.


Assuntos
Colite Colagenosa/enzimologia , Ciclo-Oxigenase 2/metabolismo , Mucosa Intestinal/enzimologia , Adulto , Idoso , Biópsia , Western Blotting , Contagem de Células , Colite Colagenosa/patologia , Feminino , Humanos , Imuno-Histoquímica , Microscopia de Fluorescência , Pessoa de Meia-Idade
5.
Am J Physiol Cell Physiol ; 296(5): C1227-42, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19261908

RESUMO

The Ca(2+)-independent phospholipase A(2) VI (iPLA(2)-VI) and the Na(+)/H(+) exchanger isoform 1 (NHE1) are highly pH-sensitive proteins that exert both protective and detrimental effects in cardiac ischemia-reperfusion. Here, we investigated the role of extracellular pH (pH(o)) in ischemia-reperfusion injury and death and in regulation and function of iPLA(2)-VI and NHE1 under these conditions. HL-1 cardiomyocytes were exposed to simulated ischemia (SI; 0.5% O(2), 8 mM K(+), and 20 mM lactate) at pH(o) 6.0 and 7.4, with or without 4 or 8 h of reperfusion (SI/R). Cytochrome c release and caspase-3 activation were reduced after acidic compared with neutral SI, whereas necrotic death, estimated as glucose-6-phosphate dehydrogenase release, was similar in the two conditions. Inhibition of iPLA(2)-VI activity by bromoenol lactone (BEL) elicited cardiomyocyte necrosis during normoxia and after acidic, yet not after neutral, SI. The isoform-selective enantiomers R- and S-BEL both mimicked the effect of racemic BEL after acidic SI. In contrast, inhibition of NHE activity by EIPA had no significant effect on necrosis after SI. Both neutral and acidic SI were associated with a reversible loss of F-actin and cortactin integrity. Inhibition of iPLA(2)-VI disrupted F-actin, cortactin, and mitochondrial integrity, whereas inhibition of NHE slightly reduced stress fiber content. iPLA(2)-VIA and NHE1 mRNA levels were reduced during SI and upregulated in a pH(o)-dependent manner during SI/R. This also affected the subcellular localization of iPLA(2)-VIA. Thus, the mode of cell death and the roles and regulation of iPLA(2)-VI and NHE1 are at least in part determined by the pH(o) during SI. In addition to having clinically relevant implications, these findings can in part explain the contradictory results obtained from previous studies of iPLA(2)-VIA and NHE1 during cardiac I/R.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Morte Celular/fisiologia , Fosfolipases A2 do Grupo VI/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Trocadores de Sódio-Hidrogênio/metabolismo , Ácidos/metabolismo , Actinas/metabolismo , Animais , Caspase 3/metabolismo , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Cortactina/metabolismo , Citocromos c/metabolismo , Expressão Gênica/fisiologia , Fosfolipases A2 do Grupo VI/genética , Concentração de Íons de Hidrogênio , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Necrose , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...