Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39282371

RESUMO

Auditory processing is widely understood to occur differently in autism, though the patterns of brain activity underlying these differences are not well understood. The diversity of autism also means brain-wide networks may change in various ways to produce similar behavioral outputs. We used larval zebrafish to investigate auditory habituation in four genetic lines relevant to autism: fmr1, mecp2, scn1lab and cntnap2. In free-swimming behavioral tests, we found each line had a unique profile of auditory hypersensitivity and/or delayed habituation. Combining the optical transparency of larval zebrafish with genetically encoded calcium indicators and light-sheet microscopy, we then observed brain-wide activity at cellular resolution during auditory habituation. As with behavior, each line showed unique alterations in brain-wide spontaneous activity, auditory processing, and adaptation in response to repetitive acoustic stimuli. We also observed commonalities in activity across our genetic lines that indicate shared circuit changes underlying certain aspects of their behavioral phenotypes. These were predominantly in regions involved in sensory integration and sensorimotor gating rather than primary auditory areas. Overlapping phenotypes include differences in the activity and functional connectivity of the telencephalon, thalamus, dopaminergic regions, and the locus coeruleus, and excitatory/inhibitory imbalance in the cerebellum. Unique phenotypes include loss of activity in the habenula in scn1lab, increased activity in auditory regions in fmr1, and differences in network activity over time in mecp2 and cntnap2. Comparing these distinct but overlapping brain-wide auditory networks furthers our understanding of how diverse genetic factors can produce similar behavioral effects through a range of circuit- and network-scale mechanisms.

2.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915708

RESUMO

Animals receive a constant stream of sensory input, and detecting changes in this sensory landscape is critical to their survival. One signature of change detection in humans is the auditory mismatch negativity (MMN), a neural response to unexpected stimuli that deviate from a predictable sequence. This process requires the auditory system to adapt to specific repeated stimuli while remaining sensitive to novel input (stimulus-specific adaptation). MMN was originally described in humans, and equivalent responses have been found in other mammals and birds, but it is not known to what extent this deviance detection circuitry is evolutionarily conserved. Here we present the first evidence for stimulus-specific adaptation in the brain of a teleost fish, using whole-brain calcium imaging of larval zebrafish at single-neuron resolution with selective plane illumination microscopy. We found frequency-specific responses across the brain with variable response amplitudes for frequencies of the same volume, and created a loudness curve to model this effect. We presented an auditory 'oddball' stimulus in an otherwise predictable train of pure tone stimuli, and did not find a population of neurons with specific responses to deviant tones that were not otherwise explained by stimulus-specific adaptation. Further, we observed no deviance responses to an unexpected omission of a sound in a repetitive sequence of white noise bursts. These findings extend the known scope of auditory adaptation and deviance responses across the evolutionary tree, and lay groundwork for future studies to describe the circuitry underlying auditory adaptation at the level of individual neurons.

3.
Curr Biol ; 31(9): 1977-1987.e4, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33657408

RESUMO

Most animals have complex auditory systems that identify salient features of the acoustic landscape to direct appropriate responses. In fish, these features include the volume, frequency, complexity, and temporal structure of acoustic stimuli transmitted through water. Larval fish have simple brains compared to adults but swim freely and depend on sophisticated sensory processing for survival.1-5 Zebrafish larvae, an important model for studying brain-wide neural networks, have thus far been found to possess a rudimentary auditory system, sensitive to a narrow range of frequencies and without evident sensitivity to acoustic features that are salient and ethologically important to adult fish.6,7 Here, we have combined a novel method for delivering water-borne sounds, a diverse assembly of acoustic stimuli, and whole-brain calcium imaging to describe the responses of individual auditory-responsive neurons across the brains of zebrafish larvae. Our results reveal responses to frequencies ranging from 100 Hz to 4 kHz, with evidence of frequency discrimination from 100 Hz to 2.5 kHz. Frequency-selective neurons are located in numerous regions of the brain, and neurons responsive to the same frequency are spatially grouped in some regions. Using functional clustering, we identified categories of neurons that are selective for a single pure-tone frequency, white noise, the sharp onset of acoustic stimuli, and stimuli involving a gradual crescendo. These results suggest a more nuanced auditory system than has previously been described in larval fish and provide insights into how a young animal's auditory system can both function acutely and serve as the scaffold for a more complex adult system.


Assuntos
Neurônios , Peixe-Zebra , Estimulação Acústica , Animais , Percepção Auditiva , Larva , Água
4.
Nat Commun ; 11(1): 6120, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257652

RESUMO

Hearing is a crucial sense in underwater environments for communication, hunting, attracting mates, and detecting predators. However, the tools currently used to study hearing are limited, as they cannot controllably stimulate specific parts of the auditory system. To date, the contributions of hearing organs have been identified through lesion experiments that inactivate an organ, making it difficult to gauge the specific stimuli to which each organ is sensitive, or the ways in which inputs from multiple organs are combined during perception. Here, we introduce Bio-Opto-Acoustic (BOA) stimulation, using optical forces to generate localized vibrations in vivo, and demonstrate stimulation of the auditory system of zebrafish larvae with precise control. We use a rapidly oscillated optical trap to generate vibrations in individual otolith organs that are perceived as sound, while adjacent otoliths are either left unstimulated or similarly stimulated with a second optical laser trap. The resulting brain-wide neural activity is characterized using fluorescent calcium indicators, thus linking each otolith organ to its individual neuronal network in a way that would be impossible using traditional sound delivery methods. The results reveal integration and cooperation of the utricular and saccular otoliths, which were previously described as having separate biological functions, during hearing.


Assuntos
Acústica , Membrana dos Otólitos/fisiologia , Som , Peixe-Zebra/fisiologia , Estimulação Acústica/métodos , Animais , Encéfalo , Audição/fisiologia , Larva/fisiologia , Neurônios , Vibração
5.
BMC Biol ; 18(1): 125, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938458

RESUMO

BACKGROUND: Loss or disrupted expression of the FMR1 gene causes fragile X syndrome (FXS), the most common monogenetic form of autism in humans. Although disruptions in sensory processing are core traits of FXS and autism, the neural underpinnings of these phenotypes are poorly understood. Using calcium imaging to record from the entire brain at cellular resolution, we investigated neuronal responses to visual and auditory stimuli in larval zebrafish, using fmr1 mutants to model FXS. The purpose of this study was to model the alterations of sensory networks, brain-wide and at cellular resolution, that underlie the sensory aspects of FXS and autism. RESULTS: Combining functional analyses with the neurons' anatomical positions, we found that fmr1-/- animals have normal responses to visual motion. However, there were several alterations in the auditory processing of fmr1-/- animals. Auditory responses were more plentiful in hindbrain structures and in the thalamus. The thalamus, torus semicircularis, and tegmentum had clusters of neurons that responded more strongly to auditory stimuli in fmr1-/- animals. Functional connectivity networks showed more inter-regional connectivity at lower sound intensities (a - 3 to - 6 dB shift) in fmr1-/- larvae compared to wild type. Finally, the decoding capacities of specific components of the ascending auditory pathway were altered: the octavolateralis nucleus within the hindbrain had significantly stronger decoding of auditory amplitude while the telencephalon had weaker decoding in fmr1-/- mutants. CONCLUSIONS: We demonstrated that fmr1-/- larvae are hypersensitive to sound, with a 3-6 dB shift in sensitivity, and identified four sub-cortical brain regions with more plentiful responses and/or greater response strengths to auditory stimuli. We also constructed an experimentally supported model of how auditory information may be processed brain-wide in fmr1-/- larvae. Our model suggests that the early ascending auditory pathway transmits more auditory information, with less filtering and modulation, in this model of FXS.


Assuntos
Transtorno Autístico/fisiopatologia , Encéfalo/fisiopatologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Peixe-Zebra , Animais , Transtorno Autístico/genética , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA