Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Organs ; 48(3): 274-284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37246826

RESUMO

BACKGROUND: Ventilator-induced diaphragm dysfunction occurs rapidly following the onset of mechanical ventilation and has significant clinical consequences. Phrenic nerve stimulation has shown promise in maintaining diaphragm function by inducing diaphragm contractions. Non-invasive stimulation is an attractive option as it minimizes the procedural risks associated with invasive approaches. However, this method is limited by sensitivity to electrode position and inter-individual variability in stimulation thresholds. This makes clinical application challenging due to potentially time-consuming calibration processes to achieve reliable stimulation. METHODS: We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. A closed-loop system recorded the respiratory flow produced by stimulation and automatically adjusted the electrode position and stimulation amplitude based on the respiratory response. By iterating over electrodes, the optimal electrode was selected. A binary search method over stimulation amplitudes was then employed to determine an individualized stimulation threshold. Pulse trains above this threshold were delivered to produce diaphragm contraction. RESULTS: Nine healthy volunteers were recruited. Mean threshold stimulation amplitude was 36.17 ± 14.34 mA (range 19.38-59.06 mA). The threshold amplitude for reliable nerve capture was moderately correlated with BMI (Pearson's r = 0.66, p = 0.049). Repeating threshold measurements within subjects demonstrated low intra-subject variability of 2.15 ± 1.61 mA between maximum and minimum thresholds on repeated trials. Bilateral stimulation with individually optimized parameters generated reliable diaphragm contraction, resulting in significant inhaled volumes following stimulation. CONCLUSION: We demonstrate the feasibility of a system for automatic optimization of electrode position and stimulation parameters using a closed-loop system. This opens the possibility of easily deployable individualized stimulation in the intensive care setting to reduce ventilator-induced diaphragm dysfunction.


Assuntos
Diafragma , Nervo Frênico , Humanos , Nervo Frênico/fisiologia , Respiração Artificial/efeitos adversos , Eletrodos Implantados , Estimulação Elétrica
2.
Artif Organs ; 46(10): 1988-1997, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35377472

RESUMO

BACKGROUND: Diaphragm muscle atrophy during mechanical ventilation begins within 24 h and progresses rapidly with significant clinical consequences. Electrical stimulation of the phrenic nerves using invasive electrodes has shown promise in maintaining diaphragm condition by inducing intermittent diaphragm muscle contraction. However, the widespread application of these methods may be limited by their risks as well as the technical and environmental requirements of placement and care. Non-invasive stimulation would offer a valuable alternative method to maintain diaphragm health while overcoming these limitations. METHODS: We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. Respiratory pressure and flow, diaphragm electromyography and mechanomyography, and ultrasound visualization were used to assess the diaphragmatic response to stimulation. The electrode positions and stimulation parameters were systematically varied in order to investigate the influence of these parameters on the ability to induce diaphragm contraction with non-invasive stimulation. RESULTS: We demonstrate that non-invasive capture of the phrenic nerve is feasible using surface electrodes without the application of pressure, and characterize the stimulation parameters required to achieve therapeutic diaphragm contractions in healthy volunteers. We show that an optimal electrode position for phrenic nerve capture can be identified and that this position does not vary as head orientation is changed. The stimulation parameters required to produce a diaphragm response at this site are characterized and we show that burst stimulation above the activation threshold reliably produces diaphragm contractions sufficient to drive an inspired volume of over 600 ml, indicating the ability to produce significant diaphragmatic work using non-invasive stimulation. CONCLUSION: This opens the possibility of non-invasive systems, requiring minimal specialist skills to set up, for maintaining diaphragm function in the intensive care setting.


Assuntos
Diafragma , Nervo Frênico , Cuidados Críticos , Estimulação Elétrica , Humanos , Nervo Frênico/fisiologia , Respiração Artificial/efeitos adversos , Ventiladores Mecânicos/efeitos adversos
3.
Sci Rep ; 9(1): 13003, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506460

RESUMO

This paper describes a Functional Electrical Stimulation (FES) standing system for rehabilitation of bone mineral density (BMD) in people with Spinal Cord Injury (SCI). BMD recovery offers an increased quality of life for people with SCI by reducing their risk of fractures. The standing system developed comprises an instrumented frame equipped with force plates and load cells, a motion capture system, and a purpose built 16-channel FES unit. This system can simultaneously record and process a wide range of biomechanical data to produce muscle stimulation which enables users with SCI to safely stand and exercise. An exergame provides visual feedback to the user to assist with upper-body posture control during exercising. To validate the system an alternate weight-shift exercise was used; 3 participants with complete SCI exercised in the system for 1 hour twice-weekly for 6 months. We observed ground reaction forces over 70% of the full body-weight distributed to the supporting leg at each exercising cycle. Exercise performance improved for each participant by an increase of 13.88 percentage points of body-weight in the loading of the supporting leg during the six-month period. Importantly, the observed ground reaction forces are of higher magnitude than other studies which reported positive effects on BMD. This novel instrumentation aims to investigate weight bearing standing therapies aimed at determining the biomechanics of lower limb joint force actions and postural kinematics.


Assuntos
Terapia por Estimulação Elétrica/métodos , Terapia por Exercício , Qualidade de Vida , Traumatismos da Medula Espinal/reabilitação , Posição Ortostática , Adulto , Densidade Óssea , Humanos , Masculino , Equilíbrio Postural , Traumatismos da Medula Espinal/fisiopatologia
4.
IEEE Trans Neural Syst Rehabil Eng ; 25(10): 1884-1891, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28422662

RESUMO

Accelerometers can be used to augment the control of powered prosthetic arms. They can detect the orientation of the joint and limb, and the controller can correct for the amount of torque required to move the limb. They can also be used to create a platform, with a fixed orientation relative to gravity for the object held in the hand. This paper describes three applications for this technology, in a powered wrist and powered arm. By adding sensors to the arm making these data available to the controller, the input from the user can be made simpler. The operator will not need to correct for changes in orientation of their body as they move. Two examples of the correction for orientation against gravity are described and an example of the system designed for use by a patient. The controller for all examples is a distributed set of microcontrollers, one node for each joint, linked with the control area network bus. The clinical arm uses a version of the Southampton adaptive manipulation scheme to control the arm and hand. In this control form, the user gives simpler input commands and leaves the detailed control of the arm to the controller.


Assuntos
Acelerometria/instrumentação , Braço , Próteses e Implantes , Acelerometria/métodos , Algoritmos , Membros Artificiais , Fenômenos Biomecânicos , Gravitação , Mãos , Humanos , Movimento (Física) , Desenho de Prótese , Torque , Punho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...