Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331934

RESUMO

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Assuntos
Deficiência Intelectual , Fatores de Transcrição , Humanos , Masculino , Camundongos , Animais , Fatores de Transcrição/metabolismo , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Deficiência Intelectual/genética , Dano ao DNA , Fenótipo , RNA Mensageiro/metabolismo
2.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357931

RESUMO

Nicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , NAD , Feminino , Gravidez , Humanos , Camundongos , Animais , NAD/metabolismo , Niacinamida , Fenótipo , Metaboloma , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo
3.
Am J Hum Genet ; 111(2): 364-382, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272033

RESUMO

The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiomiopatia Dilatada , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Coração , Transtornos do Neurodesenvolvimento/genética
4.
Hum Mutat ; 43(11): 1609-1628, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904121

RESUMO

An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive, and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes, which can share significant overlap among different conditions. In this study, we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of disorder-specific and recurring genome-wide differentially methylated probes (DMPs) and regions (DMRs). The overall distribution of DMPs and DMRs across the majority of the neurodevelopmental genetic syndromes analyzed showed substantial enrichment in gene promoters and CpG islands, and under-representation of the more variable intergenic regions. Analysis showed significant enrichment of the DMPs and DMRs in gene pathways and processes related to neurodevelopment, including neurogenesis, synaptic signaling and synaptic transmission. This study expands beyond the diagnostic utility of DNA methylation episignatures by demonstrating correlation between the function of the mutated genes and the consequent genomic DNA methylation profiles as a key functional element in the molecular etiology of genetic neurodevelopmental disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Ilhas de CpG/genética , Metilação de DNA/genética , DNA Intergênico , Epigênese Genética , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Síndrome
6.
HGG Adv ; 3(1): 100075, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35047860

RESUMO

Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34117072

RESUMO

The ETS2 repressor factor (ERF) is a transcription factor in the RAS-MEK-ERK signal transduction cascade that regulates cell proliferation and differentiation, and pathogenic sequence variants in the ERF gene cause variable craniosynostosis inherited in an autosomal dominant pattern. The reported ERF variants are largely loss-of-function, implying haploinsufficiency as a primary disease mechanism; however, ERF gene deletions have not been reported previously. Here we describe three probands with macrocephaly, craniofacial dysmorphology, and global developmental delay. Clinical genetic testing for fragile X and other relevant sequencing panels were negative; however, chromosomal microarray identified heterozygous deletions (63.7-583.2 kb) on Chromosome 19q13.2 in each proband that together included five genes associated with Mendelian diseases (ATP1A3, ERF, CIC, MEGF8, and LIPE). Parental testing indicated that the aberrations were apparently de novo in two of the probands and were inherited in the one proband with the smallest deletion. Deletion of ERF is consistent with the reported loss-of-function ERF variants, prompting clinical copy-number-variant classifications of likely pathogenic. Moreover, the recent characterization of heterozygous loss-of-function CIC sequence variants as a cause of intellectual disability and neurodevelopmental disorders inherited in an autosomal dominant pattern is also consistent with the developmental delays and intellectual disabilities identified among the two probands with CIC deletions. Taken together, this case series adds to the previously reported patients with ERF and/or CIC sequence variants and supports haploinsufficiency of both genes as a mechanism for a variable syndromic cranial phenotype with developmental delays and intellectual disability inherited in an autosomal dominant pattern.


Assuntos
Deleção de Genes , Predisposição Genética para Doença/genética , Proteínas Repressoras/genética , Crânio/anormalidades , Crânio/crescimento & desenvolvimento , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Feminino , Estudos de Associação Genética , Testes Genéticos , Heterozigoto , Humanos , Deficiência Intelectual/genética , Masculino , Proteínas de Membrana/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteína Proto-Oncogênica c-ets-2/genética , Crânio/patologia , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Transcrição/genética
8.
NPJ Genom Med ; 5(1): 54, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303739

RESUMO

Exome sequencing has enabled molecular diagnoses for rare disease patients but often with initial diagnostic rates of ~25-30%. Here we develop a robust computational pipeline to rank variants for reassessment of unsolved rare disease patients. A comprehensive web-based patient report is generated in which all deleterious variants can be filtered by gene, variant characteristics, OMIM disease and Phenolyzer scores, and all are annotated with an ACMG classification and links to ClinVar. The pipeline ranked 21/34 previously diagnosed variants as top, with 26 in total ranked ≤7th, 3 ranked ≥13th; 5 failed the pipeline filters. Pathogenic/likely pathogenic variants by ACMG criteria were identified for 22/145 unsolved cases, and a previously undefined candidate disease variant for 27/145. This open access pipeline supports the partnership between clinical and research laboratories to improve the diagnosis of unsolved exomes. It provides a flexible framework for iterative developments to further improve diagnosis.

9.
Pediatr Dermatol ; 36(6): 1002-1003, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31532840

RESUMO

Autosomal recessive congenital ichthyosis is a genetically and phenotypically heterogenous group of scaling skin disorders. We describe a patient with ARCI caused by homozygous variants in NIPAL4, in whom the dermatologic phenotype and an associated arthropathy, markedly improved with ustekinumab.


Assuntos
Fármacos Dermatológicos/uso terapêutico , Ictiose Lamelar/tratamento farmacológico , Ictiose Lamelar/genética , Receptores de Superfície Celular/genética , Ustekinumab/uso terapêutico , Homozigoto , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto
10.
Front Genet ; 10: 611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417602

RESUMO

The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies. This includes the application of cutting-edge machine learning methods to image data. As with most digital tools employed in health care, there are ethical and data governance challenges associated with using identifiable personal image data. There are also risks with failing to deliver on the patient benefits of these new technologies, the biggest of which is posed by data siloing. The Minerva Initiative has been designed to enable the public good of deep phenotyping while mitigating these ethical risks. Its open structure, enabling collaboration and data sharing between individuals, clinicians, researchers and private enterprise, is key for delivering precision public health.

11.
Neurol Genet ; 5(6): e373, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32042906

RESUMO

OBJECTIVE: The study is aimed at widening the clinical and genetic spectrum and at assessing genotype-phenotype associations in QARS encephalopathy. METHODS: Through diagnostic gene panel screening in an epilepsy cohort, and recruiting through GeneMatcher and our international network, we collected 10 patients with biallelic QARS variants. In addition, we collected data on 12 patients described in the literature to further delineate the associated phenotype in a total cohort of 22 patients. Computer modeling was used to assess changes on protein folding. RESULTS: Biallelic pathogenic variants in QARS cause a triad of progressive microcephaly, moderate to severe developmental delay, and early-onset epilepsy. Microcephaly was present at birth in 65%, and in all patients at follow-up. Moderate (14%) or severe (73%) developmental delay was characteristic, with no achievement of sitting (85%), walking (86%), or talking (90%). Additional features included irritability (91%), hypertonia/spasticity (75%), hypotonia (83%), stereotypic movements (75%), and short stature (56%). Seventy-nine percent had pharmacoresistant epilepsy with mainly neonatal onset. Characteristic cranial MRI findings include early-onset progressive atrophy of cerebral cortex (89%) and cerebellum (61%), enlargement of ventricles (95%), and age-dependent delayed myelination (88%). A small subset of patients displayed a less severe phenotype. CONCLUSIONS: These data revealed first genotype-phenotype associations and may serve for improved interpretation of new QARS variants and well-founded genetic counseling.

12.
Am J Med Genet A ; 176(12): 2561-2563, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30152198

RESUMO

Silver-Russell syndrome (SRS OMIM 180860) is a rare, albeit well-recognized disorder characterized by severe intrauterine and postnatal growth retardation. It remains a clinical diagnosis with a molecular cause identifiable in approximately 60%-70% of patients. We report a 4-year-old Australian Aboriginal girl who was born at 32 weeks gestation with features strongly suggestive of SRS, after extensive investigation she was referred to our undiagnosed disease program (UDP). Genomic sequencing was performed which identified a heterozygous splice site variant in IGF2 which is predicted to be pathogenic by in-silico studies, paternal allelic origin, de novo status, and RNA studies on fibroblasts. We compare clinical findings with reported patients to add to the knowledge base on IGF2 variants and to promote the engagement of other Australian Aboriginal families in genomic medicine.


Assuntos
Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Alelos , Processamento Alternativo , Austrália , Pré-Escolar , Eletroencefalografia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Fator de Crescimento Insulin-Like II/genética , Mutação , Sítios de Splice de RNA
13.
Mol Genet Genomic Med ; 6(1): 92-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29222831

RESUMO

BACKGROUND: Pallister-Killian syndrome (PKS) is a rare multisystem developmental syndrome usually caused by mosaic tetrasomy of chromosome 12p that is known to be associated with neurological defects. METHODS: We describe two patients with PKS, one of whom has bilateral perisylvian polymicrogyria (PMG), the other with macrocephaly, enlarged lateral ventricles and hypogenesis of the corpus callosum. We have also summarized the current literature describing brain abnormalities in PKS. RESULTS: We reviewed available cases with intracranial scans (n = 93) and found a strong association between PKS and structural brain abnormalities (77.41%; 72/93). Notably, ventricular abnormalities (45.83%; 33/72), abnormalities of the corpus callosum (25.00%; 18/72) and cerebral atrophy (29.17%; 21/72) were the most frequently reported, while macrocephaly (12.5%; 9/72) and PMG (4.17%; 3/72) were less frequent. To further understand how 12p genes might be relevant to brain development, we identified 63 genes which are enriched in the nervous system. These genes display distinct temporal as well as region-specific expression in the brain, suggesting specific roles in neurodevelopment and disease. Finally, we utilized these data to define minimal critical regions on 12p and their constituent genes associated with atrophy, abnormalities of the corpus callosum, and macrocephaly in PKS. CONCLUSION: Our study reinforces the association between brain abnormalities and PKS, and documents a diverse neurogenetic basis for structural brain abnormalities and impaired function in children diagnosed with this rare disorder.


Assuntos
Encéfalo/fisiopatologia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/fisiopatologia , Anormalidades Múltiplas/genética , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Pré-Escolar , Cromossomos Humanos Par 12/genética , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/genética , Cariotipagem , Masculino , Malformações do Desenvolvimento Cortical/genética , Megalencefalia/genética , Mosaicismo , Tetrassomia/genética
14.
Orphanet J Rare Dis ; 12(1): 83, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28468665

RESUMO

BACKGROUND: New approaches are required to address the needs of complex undiagnosed diseases patients. These approaches include clinical genomic diagnostic pipelines, utilizing intra- and multi-disciplinary platforms, as well as specialty-specific genomic clinics. Both are advancing diagnostic rates. However, complementary cross-disciplinary approaches are also critical to address those patients with multisystem disorders who traverse the bounds of multiple specialties and remain undiagnosed despite existing intra-specialty and genomic-focused approaches. The diagnostic possibilities of undiagnosed diseases include genetic and non-genetic conditions. The focus on genetic diseases addresses some of these disorders, however a cross-disciplinary approach is needed that also simultaneously addresses other disorder types. Herein, we describe the initiation and summary outcomes of a public health system approach for complex undiagnosed patients - the Undiagnosed Diseases Program-Western Australia (UDP-WA). RESULTS: Briefly the UDP-WA is: i) one of a complementary suite of approaches that is being delivered within health service, and with community engagement, to address the needs of those with severe undiagnosed diseases; ii) delivered within a public health system to support equitable access to health care, including for those from remote and regional areas; iii) providing diagnoses and improved patient care; iv) delivering a platform for in-service and real time genomic and phenomic education for clinicians that traverses a diverse range of specialties; v) retaining and recapturing clinical expertise; vi) supporting the education of junior and more senior medical staff; vii) designed to integrate with clinical translational research; and viii) is supporting greater connectedness for patients, families and medical staff. CONCLUSION: The UDP-WA has been initiated in the public health system to complement existing clinical genomic approaches; it has been targeted to those with a specific diagnostic need, and initiated by redirecting existing clinical and financial resources. The UDP-WA supports the provision of equitable and sustainable diagnostics and simultaneously supports capacity building in clinical care and translational research, for those with undiagnosed, typically rare, conditions.


Assuntos
Planejamento em Saúde/organização & administração , Saúde Pública/métodos , Genômica , Humanos , Proteômica , Austrália Ocidental
15.
Am J Med Genet A ; 164A(9): 2161-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24842779

RESUMO

Mutations in WDR62 are associated with primary microcephaly; however, they have been reported with wide phenotypic variability. We report on six individuals with novel WDR62 mutations who illustrate this variability and describe three in greater detail. Of the three, one lacks neuromotor development and has severe pachygyria on MRI, another has only delayed speech and motor development and moderate polymicrogyria, and the third has an intermediate phenotype. We observed a rare copy number change of unknown significance, a 17q25qter duplication, in the first severely affected individual. The 17q25 duplication included an interesting candidate gene, tubulin cofactor D (TBCD), crucial in microtubule assembly and disassembly. Sequencing of the non-duplicated allele showed a TBCD missense mutation, predicted to cause a deleterious p.Phe1121Val substitution. Sequencing of a cohort of five patients with WDR62 mutations, including one with an identical mutation and different phenotype, plus 12 individuals with diagnosis of microlissencephaly and another individual with mild intellectual disability (ID) and a 17q25 duplication, did not reveal TBCD mutations. However, immunostaining with tubulin antibodies of cells from patients with both WDR62 and TBCD mutation showed abnormal tubulin network when compared to controls and cells with only the WDR62 mutation. Therefore, we propose that genetic factors contribute to modify the severity of the WDR62 phenotype and, although based on suggestive evidence, TBCD could function as one of such factors.


Assuntos
Predisposição Genética para Doença , Mutação/genética , Proteínas do Tecido Nervoso/genética , Sequência de Bases , Encéfalo/patologia , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Gravidez , Tubulina (Proteína)/metabolismo
17.
Neurogenetics ; 14(1): 43-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23224214

RESUMO

We present a neurodegenerative disorder starting in early childhood of two brothers consisting of severe progressive polyneuropathy, severe progressive cerebellar atrophy, microcephaly, mild epilepsy, and intellectual disability. The cause of this rare syndrome was found to be a homozygous mutation (c.1250_1266dup, resulting in a frameshift p.Thr424GlyfsX48) in PNKP, identified by applying homozygosity mapping and whole-genome sequencing. Mutations in PNKP have previously been associated with a syndrome of microcephaly, seizures and developmental delay (MIM 613402), but not with a neurodegenerative disorder. PNKP is a dual-function enzyme with a key role in different pathways of DNA damage repair. DNA repair disorders can result in accelerated cell death, leading to underdevelopment and neurodegeneration. In skin fibroblasts from both affected individuals, we show increased susceptibility to apoptosis under stress conditions and reduced PNKP expression. PNKP is known to interact with DNA repair proteins involved in the onset of polyneuropathy and cerebellar degeneration; therefore, our findings explain this novel phenotype.


Assuntos
Enzimas Reparadoras do DNA/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Polineuropatias/genética , Degenerações Espinocerebelares/genética , Adolescente , Cerebelo/diagnóstico por imagem , Criança , Consanguinidade , Análise Mutacional de DNA , Progressão da Doença , Seguimentos , Humanos , Masculino , Mutação/fisiologia , Linhagem , Polineuropatias/diagnóstico por imagem , Polineuropatias/etiologia , Radiografia , Irmãos , Degenerações Espinocerebelares/complicações , Degenerações Espinocerebelares/diagnóstico por imagem
18.
Am J Hum Genet ; 91(3): 533-40, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22939636

RESUMO

Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein. The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance of sensory neurons. We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected individuals have structural abnormalities of the cilia and exhibit downregulation of BMP4, WNT5A, and WNT2B, which are key regulators of cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Interestingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown experiments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTN mutations therefore link aberrant ciliary function to abnormal development and organization of the cortex in human individuals.


Assuntos
Proteínas de Transporte/genética , Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Cílios/fisiologia , Malformações do Desenvolvimento Cortical/genética , Adolescente , Proteínas de Ciclo Celular , Linhagem Celular , Criança , Feminino , Técnicas de Inativação de Genes , Genes Recessivos , Humanos , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico , Mutação
19.
Eur J Hum Genet ; 20(8): 844-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22333902

RESUMO

Familial porencephaly, leukoencephalopathy and small-vessel disease belong to the spectrum of disorders ascribed to dominant mutations in the gene encoding for type IV collagen alpha-1 (COL4A1). Mice harbouring mutations in either Col4a1 or Col4a2 suffer from porencephaly, hydrocephalus, cerebral and ocular bleeding and developmental defects. We observed porencephaly and white matter lesions in members from two families that lack COL4A1 mutations. We hypothesized that COL4A2 mutations confer genetic predisposition to porencephaly, therefore we sequenced COL4A2 in the family members and characterized clinical, neuroradiological and biochemical phenotypes. Genomic sequencing of COL4A2 identified the heterozygous missense G1389R in exon 44 in one family and the c.3206delC change in exon 34 leading to frame shift and premature stop, in the second family. Fragmentation and duplication of epidermal basement membranes were observed by electron microscopy in a c.3206delC patient skin biopsy, consistent with abnormal collagen IV network. Collagen chain accumulation and endoplasmic reticulum (ER) stress have been proposed as cellular mechanism in COL4A1 mutations. In COL4A2 (3206delC) fibroblasts we detected increased rates of apoptosis and no signs of ER stress. Mutation phenotypes varied, including porencephaly, white matter lesions, cerebellar and optic nerve hypoplasia and unruptured carotid aneurysm. In the second family however, we found evidence for additional factors contributing to the phenotype. We conclude that dominant COL4A2 mutations are a novel major risk factor for familial cerebrovascular disease, including porencephaly and small-vessel disease with reduced penetrance and variable phenotype, which might also be modified by other contributing factors.


Assuntos
Encefalopatias/genética , Colágeno Tipo IV/genética , Predisposição Genética para Doença , Hemiplegia/genética , Aneurisma Intracraniano/genética , Mutação , Adolescente , Adulto , Animais , Apoptose/genética , Sequência de Bases , Membrana Basal/patologia , Membrana Basal/ultraestrutura , Encéfalo/patologia , Encefalopatias/diagnóstico , Criança , Pré-Escolar , Colágeno Tipo IV/deficiência , Consanguinidade , Estresse do Retículo Endoplasmático , Éxons , Feminino , Hemiplegia/diagnóstico , Heterozigoto , Humanos , Lactente , Aneurisma Intracraniano/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Linhagem , Porencefalia , Pele/patologia , Pele/ultraestrutura , Adulto Jovem
20.
Am J Hum Genet ; 89(2): 265-76, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21835305

RESUMO

We describe a syndrome of primary microcephaly with simplified gyral pattern in combination with severe infantile epileptic encephalopathy and early-onset permanent diabetes in two unrelated consanguineous families with at least three affected children. Linkage analysis revealed a region on chromosome 18 with a significant LOD score of 4.3. In this area, two homozygous nonconserved missense mutations in immediate early response 3 interacting protein 1 (IER3IP1) were found in patients from both families. IER3IP1 is highly expressed in the fetal brain cortex and fetal pancreas and is thought to be involved in endoplasmic reticulum stress response. We reported one of these families previously in a paper on Wolcott-Rallison syndrome (WRS). WRS is characterized by increased apoptotic cell death as part of an uncontrolled unfolded protein response. Increased apoptosis has been shown to be a cause of microcephaly in animal models. An autopsy specimen from one patient showed increased apoptosis in the cerebral cortex and pancreas beta cells, implicating premature cell death as the pathogenetic mechanism. Both patient fibroblasts and control fibroblasts treated with siRNA specific for IER3IP1 showed an increased susceptibility to apoptotic cell death under stress conditions in comparison to controls. This directly implicates IER3IP1 in the regulation of cell survival. Identification of IER3IP1 mutations sheds light on the mechanisms of brain development and on the pathogenesis of infantile epilepsy and early-onset permanent diabetes.


Assuntos
Apoptose , Diabetes Mellitus/patologia , Epilepsia/complicações , Epilepsia/patologia , Microcefalia/complicações , Células-Tronco Neurais/patologia , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Pré-Escolar , Biologia Computacional , Família , Evolução Fatal , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Ligação Genética/efeitos dos fármacos , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microcefalia/patologia , Dados de Sequência Molecular , Mutação/genética , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Linhagem , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...