Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomed Opt Express ; 15(1): 446-459, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223176

RESUMO

Research on the correlation between metal levels in blood and Covid-19 infection has been conducted primarily by assessing how each individual blood metal is linked to different aspects of the disease using samples from donors with various levels of severity to Covid-19 infection. Using logistics regression on LIBS spectra of plasma samples collected pre- and post- Covid-19 pandemic from donors known to have developed various levels of antibodies to the SARS-Cov-2 virus, we show that relying on the levels of Na, K, and Mg together is more efficient at differentiating the two types of plasma samples than any single blood alone.

3.
Sci Rep ; 13(1): 11460, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454171

RESUMO

Machine learning techniques were used to predict tensile properties of material extrusion-based additively manufactured parts made with Technomelt PA 6910, a hot melt adhesive. An adaptive data generation technique, specifically an active learning process based on the Gaussian process regression algorithm, was employed to enable prediction with limited training data. After three rounds of data collection, machine learning models based on linear regression, ridge regression, Gaussian process regression, and K-nearest neighbors were tasked with predicting properties for the test dataset, which consisted of parts fabricated with five processing parameters chosen using a random number generator. Overall, linear regression and ridge regression successfully predicted output parameters, with < 10% error for 56% of predictions. K-nearest neighbors performed worse than linear regression and ridge regression, with < 10% error for 32% of predictions and 10-20% error for 60% of predictions. While Gaussian process regression performed with the lowest accuracy (< 10% error for 32% of prediction cases and 10-20% error for 40% of predictions), it benefited most from the adaptive data generation technique. This work demonstrates that machine learning models using adaptive data generation techniques can efficiently predict properties of additively manufactured structures with limited training data.


Assuntos
Algoritmos , Aprendizado de Máquina , Coleta de Dados , Modelos Lineares , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA