Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 11(18): 2024-36, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27487410

RESUMO

Blocking the 2-C-methyl-d-erythrithol-4-phosphate pathway for isoprenoid biosynthesis offers new ways to inhibit the growth of Plasmodium spp. Fosmidomycin [(3-(N-hydroxyformamido)propyl)phosphonic acid, 1] and its acetyl homologue FR-900098 [(3-(N-hydroxyacetamido)propyl)phosphonic acid, 2] potently inhibit 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in this biosynthetic pathway. Arylpropyl substituents were introduced at the ß-position of the hydroxamate analogue of 2 to study changes in lipophilicity, as well as electronic and steric properties. The potency of several new compounds on the P. falciparum enzyme approaches that of 1 and 2. Activities against the enzyme and parasite correlate well, supporting the mode of action. Seven X-ray structures show that all of the new arylpropyl substituents displace a key tryptophan residue of the active-site flap, which had made favorable interactions with 1 and 2. Plasticity of the flap allows substituents to be accommodated in many ways; in most cases, the flap is largely disordered. Compounds can be separated into two classes based on whether the substituent on the aromatic ring is at the meta or para position. Generally, meta-substituted compounds are better inhibitors, and in both classes, smaller size is linked to better potency.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fosfomicina/análogos & derivados , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Aldose-Cetose Isomerases/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Fosfomicina/síntese química , Fosfomicina/química , Fosfomicina/farmacologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
2.
J Med Chem ; 58(7): 2988-3001, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25781377

RESUMO

Blocking the 2-C-methyl-d-erythrithol-4-phosphate (MEP) pathway for isoprenoid biosynthesis offers interesting prospects for inhibiting Plasmodium or Mycobacterium spp. growth. Fosmidomycin (1) and its homologue FR900098 (2) potently inhibit 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in this pathway. Here we introduced aryl or aralkyl substituents at the ß-position of the hydroxamate analogue of 2. While direct addition of a ß-aryl moiety resulted in poor inhibition, longer linkers between the carbon backbone and the phenyl ring were generally associated with better binding to the enzymes. X-ray structures of the parasite Dxr-inhibitor complexes show that the "longer" compounds generate a substantially different flap structure, in which a key tryptophan residue is displaced, and the aromatic group of the ligand lies between the tryptophan and the hydroxamate's methyl group. Although the most promising new Dxr inhibitors lack activity against Escherichia coli and Mycobacterium smegmatis, they proved to be highly potent inhibitors of Plasmodium falciparum in vitro growth.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fosfomicina/análogos & derivados , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Antimaláricos/química , Antimaláricos/farmacologia , Técnicas de Química Sintética , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Escherichia coli/efeitos dos fármacos , Fosfomicina/química , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Modelos Moleculares , Terapia de Alvo Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Plasmodium falciparum/efeitos dos fármacos , Conformação Proteica , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 25(7): 1577-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25726328

RESUMO

The antibiotic fosmidomycin (3a) is an inhibitor of the non-mevalonate pathway for isoprenoid biosynthesis. Four analogues in which an acylated sulfonamide group is substituting for its phosphonate moiety have been synthesized in a fruitless effort to preserve one negative charge in order to increase the accompanying affinity for 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), the fosmidomycin target enzyme.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Antibacterianos/química , Fosfomicina/análogos & derivados , Sulfonamidas/química , Acilação , Escherichia coli/enzimologia , Fosfomicina/química , Estrutura Molecular
4.
Molecules ; 19(2): 2571-87, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24566322

RESUMO

Fourteen new fosmidomycin analogues with altered metal chelating groups were prepared and evaluated for inhibition of E. coli Dxr, M. tuberculosis Dxr and the growth of P. falciparum K1 in human erythrocytes. None of the synthesized compounds showed activity against either enzyme or the Plasmodia. This study further underlines the importance of the hydroxamate functionality and illustrates that identifying effective alternative bidentate ligands for this target enzyme is challenging.


Assuntos
Inibidores Enzimáticos/administração & dosagem , Eritrócitos/efeitos dos fármacos , Fosfomicina/análogos & derivados , Plasmodium falciparum/efeitos dos fármacos , Aldose-Cetose Isomerases/antagonistas & inibidores , Antimaláricos/administração & dosagem , Antimaláricos/síntese química , Antimaláricos/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Fosfomicina/administração & dosagem , Fosfomicina/síntese química , Humanos , Plasmodium falciparum/crescimento & desenvolvimento
5.
J Med Chem ; 56(1): 376-80, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23215035

RESUMO

To explore the hitherto successful derivatization of the α-carbon of fosmidomycin, a series of new α-substituted analogues was prepared. This was done by introduction of a heteroatom (N or O) in α-position to the phosphonate and using the resultant OH and NH2 groups as a handle for appending a variety of substituents by means of several functional groups such as ether, amide, urea, and 1,4-triazole. The synthesized molecules, as a racemic mixture, were assayed for their EcDXR inhibitory potency. Both the α-azido-analogue and the α-hydroxylated analogue proved most promising, and docking experiments were performed. Although several compounds showed high potency when assayed against Plasmodium falciparum K1 in human erythrocytes, a clear correlation between the enzyme inhibition constants and P. falciparum inhibition concentrations could not be found.


Assuntos
Antimaláricos/síntese química , Fosfomicina/análogos & derivados , Aldose-Cetose Isomerases/antagonistas & inibidores , Antimaláricos/química , Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Fosfomicina/síntese química , Fosfomicina/química , Fosfomicina/farmacologia , Humanos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Estereoisomerismo , Relação Estrutura-Atividade
6.
BMC Biochem ; 13: 16, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22892012

RESUMO

BACKGROUND: Protein-protein interactions are at the basis of many cellular processes, and they are also involved in the interaction between pathogens and their host(s). Many intracellular pathogenic bacteria translocate proteins called effectors into the cytoplasm of the infected host cell, and these effectors can interact with one or several host protein(s). An effector named RicA was recently reported in Brucella abortus to specifically interact with human Rab2 and to affect intracellular trafficking of this pathogen. RESULTS: In order to identify regions of the RicA protein involved in the interaction with Rab2, RicA was subjected to extensive random mutagenesis using error prone polymerase chain reaction. The resulting allele library was selected by the yeast two-hybrid assay for Rab2-interacting clones that were isolated and sequenced, following the "absence of interference" approach. A tridimensional model of RicA structure was used to position the substitutions that did not affect RicA-Rab2 interaction, giving a "negative image" of the putative interaction region. Since RicA is a bacterial conserved protein, RicA homologs were also tested against Rab2 in a yeast two-hybrid assay, and the C. crescentus homolog of RicA was found to interact with human Rab2. Analysis of the RicA structural model suggested that regions involved in the folding of the "beta helix" or an exposed loop with the IGFP sequence could also be involved in the interaction with Rab2. Extensive mutagenesis of the IGFP loop suggested that loss of interaction with Rab2 was correlated with insolubility of the mutated RicA, showing that "absence of interference" approach also generates surfaces that could be necessary for folding. CONCLUSION: Extensive analysis of substitutions in RicA unveiled two structural elements on the surface of RicA, the most exposed ß-sheet and the IGFP loop, which could be involved in the interaction with Rab2 and protein folding. Our analysis of mutants in the IGFP loop suggests that, at least for some mono-domain proteins such as RicA, protein interaction analysis using allele libraries could be complicated by the dual effect of many substitutions affecting both folding and protein-protein interaction.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Proteína rab2 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Mutagênese , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido , Proteína rab2 de Ligação ao GTP/química
7.
Biochimie ; 94(11): 2423-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22750808

RESUMO

Endo-inulinase is a member of glycosidase hydrolase family 32 (GH32) degrading fructans of the inulin type with an endo-cleavage mode and is an important class of industrial enzyme. In the present study, we report the first crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum at 1.5 Å. It was solved by molecular replacement with the structure of exo-inulinase as search model. The 3D structure presents a bimodular arrangement common to other GH32 enzymes: a N-terminal 5-fold ß-propeller catalytic domain with four ß-sheets and a C-terminal ß-sandwich domain organized in two ß-sheets with five ß-strands. The structural analysis and comparison with other GH32 enzymes reveal the presence of an extra pocket in the INU2 catalytic site, formed by two loops and the conserved motif W-M(I)-N-D(E)-P-N-G. This cavity would explain the endo-activity of the enzyme, the critical role of Trp40 and particularly the cleavage at the third unit of the inulin(-like) substrates. Crystal structure at 2.1 Å of INU2 complexed with fructosyl molecules, experimental digestion data and molecular modelling studies support these hypotheses.


Assuntos
Aspergillus/enzimologia , Domínio Catalítico , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Biocatálise , Cristalografia por Raios X , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular
8.
Eur J Med Chem ; 46(7): 3058-65, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21419531

RESUMO

Indoleamine 2,3-dioxygenase (IDO) is an important new therapeutic target for the treatment of cancer. With the aim of discovering novel IDO inhibitors, a virtual screen was undertaken and led to the discovery of the keto-indole derivative 1a endowed with an inhibitory potency in the micromolar range. Detailed kinetics were performed and revealed an uncompetitive inhibition profile. Preliminary SARs were drawn in this series and corroborated the putative binding orientation as suggested by docking.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indóis/química , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Bases de Dados de Compostos Químicos , Descoberta de Drogas , Ensaios Enzimáticos , Escherichia coli/genética , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Triptofano/química
9.
Biochimie ; 92(10): 1407-15, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20621155

RESUMO

In this study, the crystal structure of a novel endo-1,4-ß-xylanase from Scytalidium acidophilum, XYL1, was solved at 1.9Å resolution. This is one of the few solved crystal structures of acidophilic proteins. The enzyme has the overall fold typical to family 11 xylanases. Comparison of this structure with other homologous acidophilic, neutrophilic and alkalophilic xylanases provides additional insights into the general features involved in low pH adaptation (stability and activity). Several sequence and structure modifications appeared to be responsible for the acidophilic characteristic: (a) the presence of an aspartic acid H bonded to the acid/base catalyst (b) the nature of specifically conserved residues in the active site (c) the negative potential at the surface (d) the decreased number of salt bridges and H bonds in comparison with highly alkaline enzymes.


Assuntos
Adaptação Fisiológica , Ascomicetos/enzimologia , Endo-1,4-beta-Xilanases/química , Domínio Catalítico , Cristalografia por Raios X , Proteínas Fúngicas/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Conformação Proteica , Eletricidade Estática
10.
Biochemistry ; 47(35): 9051-3, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18693754

RESUMO

The N-terminal region is stabilized in the crystal structure of Thermus thermophilus type 2 isopentenyl diphosphate isomerase in complex with inorganic pyrophosphate, providing new insights about the active site and the catalytic mechanism of the enzyme. The PP i moiety is located near the conserved residues, H10, R97, H152, Q157, E158, and W219, and the flavin cofactor. The putative active site of isopentenyl diphosphate isomerase 2 provides interactions for stabilizing a carbocationic intermediate similar to those that stabilize the intermediate in the well-established protonation-deprotonation mechanism of isopentenyl diphosphate isomerase 1.


Assuntos
Proteínas de Bactérias/química , Isomerases de Ligação Dupla Carbono-Carbono/química , Difosfatos/química , Difosfatos/metabolismo , Thermus thermophilus/enzimologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Catálise , Cristalografia por Raios X , Hemiterpenos , Cinética , Modelos Moleculares , Espectrofotometria Ultravioleta , Especificidade por Substrato , Thermus thermophilus/metabolismo
11.
BMC Struct Biol ; 8: 29, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18522744

RESUMO

BACKGROUND: Recently, we reported a unique approach to preserve the activity of some proteins in the presence of the denaturing agent, Sodium Dodecyl Sulfate (SDS). This was made possible by addition of the amphipathic solvent 2,4-Methyl-2-PentaneDiol (MPD), used as protecting but also as refolding agent for these proteins. Although the persistence of the protein activity in the SDS/MPD mixture was clearly established, preservation of their structure was only speculative until now. RESULTS: In this paper, a detailed X-ray study addresses the pending question. Crystals of hen egg-white lysozyme were grown for the first time in the presence of MPD and denaturing concentrations of SDS. Depending on crystallization conditions, tetragonal crystals in complex with either SDS or MPD were collected. The conformation of both structures was very similar to the native lysozyme and the obtained complexes of SDS-lysozyme and MPD-lysozyme give some insights in the interplay of protein-SDS and protein-MPD interactions. CONCLUSION: This study clearly established the preservation of the enzyme structure in a SDS/MPD mixture. It is hypothesized that high concentrations of MPD would change the properties of SDS and lower or avoid interactions between the denaturant and the protein. These structural data therefore support the hypothesis that MPD avoids disruption of the enzyme structure by SDS and can protect proteins from SDS denaturation.


Assuntos
Glicóis/farmacologia , Desnaturação Proteica/efeitos dos fármacos , Dodecilsulfato de Sódio/farmacologia , Solventes/farmacologia , Tensoativos/farmacologia , Animais , Galinhas , Cristalização , Cristalografia por Raios X , Glicóis/química , Glicóis/metabolismo , Muramidase/química , Muramidase/metabolismo , Conformação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...