Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16147, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752190

RESUMO

Pairing of the T cell receptor (TCR) with its cognate peptide-MHC (pMHC) is a cornerstone in T cell-mediated immunity. Recently, single-cell sequencing coupled with DNA-barcoded MHC multimer staining has enabled high-throughput studies of T cell specificities. However, the immense variability of TCR-pMHC interactions combined with the relatively low signal-to-noise ratio in the data generated using current technologies are complicating these studies. Several approaches have been proposed for denoising single-cell TCR-pMHC specificity data. Here, we present a benchmark evaluating two such denoising methods, ICON and ITRAP. We applied and evaluated the methods on publicly available immune profiling data provided by 10x Genomics. We find that both methods identified approximately 75% of the raw data as noise. We analyzed both internal metrics developed for the purpose and performance on independent data using machine learning methods trained on the raw and denoised 10x data. We find an increased signal-to-noise ratio comparing the denoised to the raw data for both methods, and demonstrate an overall superior performance of the ITRAP method in terms of both data consistency and performance. In conclusion, this study demonstrates that Improving the data quality from high throughput studies of TCRpMHC-specificity by denoising is paramount in increasing our understanding of T cell-mediated immunity.


Assuntos
Benchmarking , Confiabilidade dos Dados , Genômica , Imunidade Celular , Aprendizado de Máquina
2.
Elife ; 122023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37133356

RESUMO

Novel single-cell-based technologies hold the promise of matching T cell receptor (TCR) sequences with their cognate peptide-MHC recognition motif in a high-throughput manner. Parallel capture of TCR transcripts and peptide-MHC is enabled through the use of reagents labeled with DNA barcodes. However, analysis and annotation of such single-cell sequencing (SCseq) data are challenged by dropout, random noise, and other technical artifacts that must be carefully handled in the downstream processing steps. We here propose a rational, data-driven method termed ITRAP (improved T cell Receptor Antigen Paring) to deal with these challenges, filtering away likely artifacts, and enable the generation of large sets of TCR-pMHC sequence data with a high degree of specificity and sensitivity, thus outputting the most likely pMHC target per T cell. We have validated this approach across 10 different virus-specific T cell responses in 16 healthy donors. Across these samples, we have identified up to 1494 high-confident TCR-pMHC pairs derived from 4135 single cells.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Antígenos , Peptídeos
3.
Commun Biol ; 4(1): 1060, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508155

RESUMO

Prediction of T-cell receptor (TCR) interactions with MHC-peptide complexes remains highly challenging. This challenge is primarily due to three dominant factors: data accuracy, data scarceness, and problem complexity. Here, we showcase that "shallow" convolutional neural network (CNN) architectures are adequate to deal with the problem complexity imposed by the length variations of TCRs. We demonstrate that current public bulk CDR3ß-pMHC binding data overall is of low quality and that the development of accurate prediction models is contingent on paired α/ß TCR sequence data corresponding to at least 150 distinct pairs for each investigated pMHC. In comparison, models trained on CDR3α or CDR3ß data alone demonstrated a variable and pMHC specific relative performance drop. Together these findings support that T-cell specificity is predictable given the availability of accurate and sufficient paired TCR sequence data. NetTCR-2.0 is publicly available at https://services.healthtech.dtu.dk/service.php?NetTCR-2.0 .


Assuntos
Redes Neurais de Computação , Receptores de Antígenos de Linfócitos T/química , Ligação Proteica
4.
Sci Immunol ; 6(58)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853928

RESUMO

T cells are important for effective viral clearance, elimination of virus-infected cells and long-term disease protection. To examine the full-spectrum of CD8+ T cell immunity in COVID-19, we experimentally evaluated 3141 major histocompatibility (MHC) class I-binding peptides covering the complete SARS-CoV-2 genome. Using DNA-barcoded peptide-MHC complex (pMHC) multimers combined with a T cell phenotype panel, we report a comprehensive list of 122 immunogenic and a subset of immunodominant SARS-CoV-2 T cell epitopes. Substantial CD8+ T cell recognition was observed in COVID-19 patients, with up to 27% of all CD8+ lymphocytes interacting with SARS-CoV-2-derived epitopes. Most immunogenic regions were derived from open reading frame (ORF) 1 and ORF3, with ORF1 containing most of the immunodominant epitopes. CD8+ T cell recognition of lower affinity was also observed in healthy donors toward SARS-CoV-2-derived epitopes. This pre-existing T cell recognition signature was partially overlapping with the epitope landscape observed in COVID-19 patients and may drive the further expansion of T cell responses to SARS-CoV-2 infection. Importantly the phenotype of the SARS-CoV-2-specific CD8+ T cells, revealed a strong T cell activation in COVID-19 patients, while minimal T cell activation was seen in healthy individuals. We found that patients with severe disease displayed significantly larger SARS-CoV-2-specific T cell populations compared to patients with mild diseases and these T cells displayed a robust activation profile. These results further our understanding of T cell immunity to SARS-CoV-2 infection and hypothesize that strong antigen-specific T cell responses are associated with different disease outcomes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Código de Barras de DNA Taxonômico , Mapeamento de Epitopos , Feminino , Genoma Viral , Humanos , Complexo Principal de Histocompatibilidade/genética , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...