Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775157

RESUMO

Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eµ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfócitos T , Microambiente Tumoral , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Humanos , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Proliferação de Células/efeitos dos fármacos , Proteínas que Contêm Bromodomínio , Proteínas
2.
Nat Commun ; 15(1): 3559, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670958

RESUMO

Electron-electron interactions in materials lead to exotic many-body quantum phenomena, including Mott metal-insulator transitions (MITs), magnetism, quantum spin liquids, and superconductivity. These phases depend on electronic band occupation and can be controlled via the chemical potential. Flat bands in two-dimensional (2D) and layered materials with a kagome lattice enhance electronic correlations. Although theoretically predicted, correlated-electron Mott insulating phases in monolayer 2D metal-organic frameworks (MOFs) with a kagome structure have not yet been realised experimentally. Here, we synthesise a 2D kagome MOF on a 2D insulator. Scanning tunnelling microscopy (STM) and spectroscopy reveal a MOF electronic energy gap of ∼200 meV, consistent with dynamical mean-field theory predictions of a Mott insulator. Combining template-induced (via work function variations of the substrate) and STM probe-induced gating, we locally tune the electron population of the MOF kagome bands and induce Mott MITs. These findings enable technologies based on electrostatic control of many-body quantum phases in 2D MOFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA