Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(45): 43074-43087, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024729

RESUMO

Novel fluorescent calix[4]arene derivatives L1 and L2 were synthesized by introducing phenanthridine moieties at the lower calixarene rim, whereby phenanthridine groups served as fluorescent probes and for cation coordination. To enhance the cation-binding ability of the ligands, besides phenanthridines, tertiary-amide or ester functionalities were also introduced in the cation-binding site. Complexation of the prepared compounds with alkali metal cations in acetonitrile (MeCN), methanol (MeOH), ethanol (EtOH), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) was investigated at 25 °C experimentally (UV spectrophotometry, fluorimetry, microcalorimetry, and in the solid state by X-ray crystallography) and by means of computational techniques (classical molecular dynamics and DFT calculations). The thermodynamic parameters (equilibrium constants and derived standard reaction Gibbs energies, reaction enthalpies, and entropies) of the corresponding reactions were determined. The tertiary-amide-based compound L1 was found to have a much higher affinity toward cations compared to ester derivative L2, whereby the stabilities of the ML1+ and ML2+ complexes were quite solvent-dependent. The stability decreased in the solvent order: MeCN ≫ EtOH > MeOH > DMF > DMSO, which could be explained by taking into account the differences in the solvation of the ligands as well as free and complexed alkali metal cations in the solvents used. The obtained thermodynamic quantities were thoroughly discussed regarding the structural characteristics of the studied compounds, as well as the solvation abilities of the solvents examined. Molecular and crystal structures of acetonitrile and water solvates of L1 and its sodium complex were determined by single-crystal X-ray diffraction. The results of computational studies provided additional insight into the L1 and L2 complexation properties and structures of the ligands and their cation complexes.

2.
Eur J Pharm Sci ; 187: 106461, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160178

RESUMO

The discovery of cephalosporin and demonstration of its improved stability in aqueous solution, as well as enhanced in vitro activity against penicillin-resistant organisms, were major breakthroughs in the development of ß-lactam antibiotics. Although cephalosporins are more stable with respect to hydrolytic degradation than penicillins, they still experience a variety of chemical transformations. The present study offers an insight into the rates and mechanisms of ceftriaxone degradation at the therapeutic concentration in water, a mixture of water and deuterium oxide, and deuterium oxide itself at the neutral pH. Specific ceftriaxone degradation products were observed in aged samples (including a previously unreported dimer-type species), and by comparing the degradation rates in H2O and D2O, the observation of a kinetic isotope effect provided some valuable insight as to the nature of the initial ceftriaxone degradation. The effect of protium to deuterium isotope change on the degradation kinetics of ceftriaxone was evaluated using the method of initial rates based on HPLC analysis as well as by quantitative 1H NMR spectroscopy. Moreover, computational analysis was utilized to get a molecular insight into chemical processes governing the ceftriaxone degradation and to rationalize the stabilizing effect of replacing H2O with D2O.


Assuntos
Ceftriaxona , Água , Óxido de Deutério/química , Deutério/química , Cinética , Água/química , Cefalosporinas
3.
Molecules ; 27(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056784

RESUMO

The binding of alkali metal cations with two tertiary-amide lower-rim calix[4]arenes was studied in methanol, N,N-dimethylformamide, and acetonitrile in order to explore the role of triazole and glucose functionalities in the coordination reactions. The standard thermodynamic complexation parameters were determined microcalorimetrically and spectrophotometrically. On the basis of receptor dissolution enthalpies and the literature data, the enthalpies for transfer of reactants and products between the solvents were calculated. The solvent inclusion within a calixarene hydrophobic basket was explored by means of 1H NMR spectroscopy. Classical molecular dynamics of the calixarene ligands and their complexes were carried out as well. The affinity of receptors for cations in methanol and N,N-dimethylformamide was quite similar, irrespective of whether they contained glucose subunits or not. This indicated that sugar moieties did not participate or influence the cation binding. All studied reactions were enthalpically controlled. The peak affinity of receptors for sodium cation was noticed in all complexation media. The complex stabilities were the highest in acetonitrile, followed by methanol and N,N-dimethylformamide. The solubilities of receptors were greatly affected by the presence of sugar subunits. The medium effect on the affinities of calixarene derivatives towards cations was thoroughly discussed regarding the structural properties and solvation abilities of the investigated solvents.

4.
Soft Matter ; 18(4): 744-754, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34927650

RESUMO

This study was carried out with the aim of establishing how the outcomes of polyelectrolyte multilayer formation can be predicted on the basis of the results of complexation studies in solution and vice versa. For this purpose, the correlation between the processes of complex and multilayer formation involving three pairs of vinylic polyions in solutions of binary 1 : 1 sodium salts (NaX; X = F, Cl, Br, I, NO3, ClO4) was explored by means of dynamic and electrophoretic light scattering, potentiometry, microcalorimetry, spectrophotometry and quartz crystal microbalance. The gradual reactant mixing in solution at lower salt concentrations resulted in a Fuoss-Sadek sequence of events (primary complexes → secondary complexes → 1 : 1 flocculate), whereby the obtained nano-complexes could be successively overcharged. At high salt concentration and with excess polycation present, metastable nano-complexes and precipitates containing surplus of positively charged monomers were formed. The amount of extrinsically compensated charge was in accord with the polycation affinities toward counteranions, established by monitoring the electrolyte-induced aggregation of positively charged nano-complexes. Perfect analogy with respect to counteranion influence on the amount of adsorbed polycation was noticed for corresponding multilayers. Aside from providing a deeper understanding of interpolyelectrolyte neutralization, the gained insights can also be used to steer the polyelectrolyte multilayer composition and properties.


Assuntos
Eletrólitos
5.
Colloids Surf B Biointerfaces ; 196: 111289, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32768986

RESUMO

The objective of this study was to investigate interactions of zein (Z) and zein/rosin (Z/R) nanoparticles with gum arabic (GA), at different pH. Nanoparticles were firstly prepared by antisolvent precipitation of biopolymers from aqueous ethanol solutions. Nanoparticles suspensions were then dialyzed against water in order to remove ethanol and other impurities, and water suspensions of zein and zein/rosin nanoparticles were obtained. It was shown that composition of nanoparticles affects their surface charge density. Zeta potential of nanoparticles was positive without GA and changed to negative after addition of GA, at all pH tested. SEM analysis proved both Z and Z/R nanoparticles to be spherical and in size around 200 nm. The effect of addition of GA on particle size was determined using dynamic light scattering method. It was found that addition of GA increases size of nanoparticles at pH = 4 and pH = 5.5, from 150 - 220 nm to 250 - 320 nm. However, at pH = 3 it causes aggregation process, and diameter of particles increases up to few micrometres. Isothermal titration calorimetry was used to measure enthalpy changes in reaction between Z or Z/R nanoparticles and GA. Results showed that reaction between GA and Z or Z/R NPs is exothermic at each pH tested, except for Z NPs at pH = 3, where it was endothermic. At presented pHs, Z/R NPs were less charged compared to Z NPs, and their surface get saturated with GA molecules more rapidly. Z NPs showed greater enthalpy change in reaction with GA, compared to Z/R NPs.


Assuntos
Nanopartículas , Zeína , Goma Arábica , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Polieletrólitos , Resinas Vegetais
6.
Arh Hig Rada Toksikol ; 71(1): 63-68, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597138

RESUMO

Preventing bacterial attachment to surfaces is the most efficient approach to controlling biofilm proliferation. The aim of this study was to compare anti-adhesion potentials of 5 and 50 mmol/L polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate), poly(4-vinyl-N-ethylpyridinium bromide)/ poly(sodium 4-styrenesulfonate), and poly(4-vinyl-N-isobutylpyridinium bromide)/poly(sodium 4-styrenesulfonate) against Escherichia coli. Glass surface was covered with five polyelectrolyte layers and exposed to bacterial suspensions. Poly(4-vinyl-N-ethylpyridinium bromide)/poly(sodium 4-styrenesulfonate) was the most effective against bacterial adhesion, having reduced it by 60 %, followed by poly(4-vinyl-N-isobutylpyridinium bromide)/poly(sodium 4- styrenesulfonate) (47 %), and poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (38 %). Polyelectrolyte multilayers with quaternary amine groups have a significant anti-adhesion potential and could find their place in coatings for food, pharmaceutical, and medical industry.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nanotecnologia/métodos , Polieletrólitos/química
7.
Chemistry ; 26(23): 5104, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32310336

RESUMO

Invited for the cover of this issue is Josip Pozar with collaborators from the University of Zagreb. The image depicts the differences in high- and low-temperature water effect on the complexation thermodynamics of adamantyl mannoside with ß-cyclodextrin. Read the full text of the article at 10.1002/chem.202000282.

8.
Chemistry ; 26(23): 5208-5219, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31999026

RESUMO

The effects of solvent and temperature on the complexation of adamantyl mannoside with ß-cyclodextrin and 6-O-monotosyl-6-deoxy-ß-cyclodextrin were explored experimentally and by means of molecular dynamics simulations. Efficient binding was observed only in hydrogen-bonded solvents, which indicated solvophobically driven complexation. The stability of the inclusion complex was considerably higher in aqueous media. A pronounced temperature dependence of Δr H○ and Δr S○ , resulting in perfect enthalpy-entropy compensation, was observed in water. The complexation thermodynamics was in line with classical rationale for the hydrophobic effect at lower temperatures and the nonclassical explanation at higher temperatures. This finding linked cyclodextrin complexation thermodynamics with insights regarding the effect of temperature on the hydration water structure. The complexation enthalpies and entropies were weakly dependent on temperature in organic media. The signs of Δr H○ and Δr S○ were in accordance with the nonclassical hydrophobic (solvophobic) effect. The structures of the optimized product corresponded to those deduced spectroscopically, and the calculated and experimentally obtained values of Δr G○ were in very good agreement. This investigation clearly demonstrated that solvophobically driven formation of cyclodextrin complexes could be anticipated in structured solvents in general. However, unlike in water, adamantane and the host cavity behaved solely as structure breakers in the organic media explored so far.

9.
Org Biomol Chem ; 17(18): 4640-4651, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020307

RESUMO

Multicomponent self-assembled supramolecular nanovesicles based on an amphiphilic derivative of ß-cyclodextrin and phosphatidylcholine liposomes (PC-liposomes) functionalized with four structurally different adamantyl guanidines were prepared and characterized. Incorporation efficiency of the examined adamantyl guanidines as well as size and surface charge of the prepared supramolecular nanovesicles was determined. Changes in the surface charge of the prepared nanovesicles confirmed that guanidinium groups were exposed on the surface. ITC and 1H NMR spectroscopy complemented by molecular dynamics (MD) simulations were used to elucidate the structural data and stability of the inclusion complexes of ß-cyclodextrin and adamantyl guanidines (AG1-5). The results are consistent and point to a significant contribution of the guanylhydrazone residue to the complexation process for AG1 and AG2 with ß-cyclodextrin. In order to evaluate the potential of the self-assembled supramolecular nanomaterial as a nonviral gene delivery vector, fluorescence correlation spectroscopy was used. It showed that the prepared nanovesicles functionalized with adamantyl guanidines AG1-4 effectively recognize and bind the fluorescently labelled DNA. Furthermore, gel electrophoretic assay confirmed the formation of nanoplexes of functionalized nanovesicles and plasmid DNA. These findings together suggest that the designed supramolecular nanovesicles could be successfully applied as nonviral gene delivery vectors.


Assuntos
Adamantano/análogos & derivados , Portadores de Fármacos/química , Guanidinas/química , Lipossomos/química , beta-Ciclodextrinas/química , Linhagem Celular Tumoral , DNA/química , DNA/genética , Difusão , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Plasmídeos
10.
Org Biomol Chem ; 16(6): 904-912, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29308493

RESUMO

Cation complexation in water presents a unique challenge in calixarene chemistry, mostly due to the fact that a vast majority of calixarene-based cation receptors is not soluble in water or their solubility has been achieved by introducing functionalities capable of (de)protonation. Such an approach inevitably involves the presence of counterions which compete with target cations for the calixarene binding site, and also rather often requires the use of ion-containing buffer solutions in order to control the pH. Herein we devised a new strategy towards the solution of this problem, based on introducing carbohydrate units at the lower or upper rim of calix[4]arenes which comprise efficient cation binding sites. In this context, we prepared neutral, water-soluble receptors with secondary or tertiary amide coordinating groups, and studied their complexation with alkali metal cations in aqueous and methanol (for the comparison purpose) solutions. Complexation thermodynamics was quantitatively characterized by UV spectrometry and isothermal titration calorimetry, revealing that one of the prepared tertiary amide derivatives is capable of remarkably efficient (log K ≈ 5) and selective binding of sodium cations among alkali metal cations in water. Given the ease of the synthetic procedure used, and thus the variety of accessible analogues, this study can serve as a platform for the development of reagents for diverse purposes in aqueous media.

11.
J Phys Chem B ; 121(36): 8539-8550, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28805386

RESUMO

The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na+ cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL+ complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL+ stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

12.
Soft Matter ; 10(34): 6530-45, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25043702

RESUMO

Complexation between polyallylammonium cations and polystyrenesulfonate anions was investigated in aqueous solutions of binary 1 : 1 sodium electrolytes (NaX, X = F, Cl, Br, I, NO3, ClO4) by means of microcalorimetry, dynamic light scattering, electrokinetics and spectrophotometry. At lower molar ratios of monomer units charged polyelectrolyte complexes were formed. At molar ratios close to equivalence and at lower salt concentrations (c(NAX)/mol dm(-3) ≤ 0.1) flocculation occurred. The obtained precipitates contained approximately equimolar amounts of oppositely charged monomer units. At c(NAX)/mol dm(-3) ≥ 0.5 (X = NO3, ClO4) and in the case when the polycation was present in excess, the amount of positively charged monomer units in the precipitate was higher than that of negatively charged monomers (asymmetric neutralisation). In addition, the aggregation of positively charged complexes in concentrated solutions of all investigated electrolytes was noticed. The onset of aggregation was strongly anion specific. However, the aggregation of negatively charged complexes did not occur even at c(NaX) = 3 mol dm(-3). The composition of the insoluble products at equimolar ratio of monomer units and higher concentrations of NaNO3 and NaClO4 was dependent on the order of addition, indicating non-equilibrium interpolyelectrolyte neutralisation under all ionic conditions. At 25 °C and c(NaClO4) = 1 mol dm(-3) equilibrium was not reached after two months. In contrast, the supernatants showed no traces of free polyanion chains after being heated for a week at 60 °C. The pairing of monomer units was predominantly entropically driven, irrespective of the type of reaction products formed (polyelectrolyte complexes, precipitates) and the electrolyte type. The results obtained indicate that the overcharging is not an enthalpically demanding process. The calorimetric measurements also suggest that the strong influence of counteranions on the composition of the reaction product must be related to differences in ion distribution around polycations. However, despite rather similar energetics for complex and precipitate formation in the presence of various sodium salts a clear correlation of formation enthalpies with corresponding anion hydration enthalpies (Hofmeister series) was observed. Somewhat surprisingly, the titration calorimetry experiments have also revealed that the increase in electrolyte concentration affects the enthalpy of interpolyelectrolyte neutralisation negligibly.

13.
Phys Chem Chem Phys ; 15(19): 7210-9, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23552227

RESUMO

The (de)protonation equilibrium of the poly(allylammonium) cation (PAH) in an aqueous solution of various binary 1:1 electrolytes of different concentrations (0.1 ≤ c(NaX)/mol dm(-3) ≤ 1.0; X = Cl(-), Br(-), I(-), NO3(-)) was investigated potentiometrically at 25 °C. The mixed and concentration apparent equilibrium deprotonation constants (Kap) were calculated from the experimentally collected data and concentration profiles of dissociated and undissociated functional groups were obtained. The standard pK value of monomers was estimated by extrapolating the pKap values determined at various concentrations of added electrolyte to the degree of dissociation α = 1. The dependence of pKap on the degree of dissociation could be well described by the two parameter model according to Mandel. The variation of pKap* with monomer dissociation degree was found to be in satisfactory agreement with the cylinder Stern model, based on the Poisson-Boltzmann (PB) equation, and a constant Stern capacitance. Generally, the derived apparent constants showed a pronounced dependence on the concentration of binary electrolytes and a weak dependence on the type of anion counterbalancing the polyion charge. The influence of the PAH chain length (polymers containing on average 150 and 700 monomers were examined) on the protonation equilibrium of PAH could not be observed.


Assuntos
Modelos Químicos , Compostos de Amônio Quaternário/química , Eletrólitos/química , Modelos Estatísticos , Prótons , Termodinâmica
14.
Phys Chem Chem Phys ; 13(34): 15610-8, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21792404

RESUMO

In order to obtain a deeper insight into effects occurring when an electrolyte solution is added to a solution of a strong polyelectrolyte, the microcalorimetric and potentiometric titrations of poly(sodium 4-styrenesulfonate) (Na(+)PSS(-)) solution with different alkali, earth-alkali and tetraalkylammonium nitrate, perchlorate and chloride solutions were performed. From the calorimetric titrations the differences in sign and magnitude of enthalpy change upon addition of various electrolytes were observed depending on the salt used. Potentiometric titrations using a sodium ion selective electrode have revealed that addition of an electrolyte is accompanied by the increase in sodium activity until a certain critical value is reached, which seems to be the consequence of counterion substitution on the polyelectrolyte chain. In the case of addition of lithium and sodium salts the experimental results for ΔH of mixing can be qualitatively correctly explained by the Poisson-Boltzmann and Monte Carlo calculations based on the continuum solvent models. This is not the case for the mixtures with KNO(3), RbNO(3) and CsNO(3) salts. The results suggest that the ion-specific effects, associated with the changes in the water structure, have to be taken into account when thermodynamic properties of polyelectrolytes in solution are concerned. The calorimetric results imply that the enthalpically observed cation specificity for binding to a poly(styrenesulfonate) group could be correlated with corresponding cation hydration enthalpies. The counterion substitution of sodium with divalent cations was found to be endothermic, which is in qualitative agreement with the electrostatic theory.


Assuntos
Poliestirenos/química , Ânions/química , Calorimetria , Eletrólitos/química , Eletrodos Seletivos de Íons , Método de Monte Carlo , Nitratos/química , Percloratos/química , Potenciometria , Sais/química
15.
Biochimie ; 93(10): 1761-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21704670

RESUMO

Seryl-tRNA synthetases (SerRS) covalently attach serine to cognate tRNA(Ser). Atypical SerRSs, considerably different from canonical enzymes, have been found in methanogenic archaea. A crystal structure of methanogenic-type SerRS revealed a motif within the active site (serine ordering loop; SOL), which undergoes a notable induced-fit rearrangement during serine binding. The loop rearranges from a disordered conformation in the unliganded enzyme, to an ordered structure comprising an α-helix followed by a loop. We performed kinetic and thermodynamic analyses of SerRS variants to establish the role of the SOL in serylation. Thermodynamic data confirmed a linkage between binding of serine and α-helix formation, previously described by the crystallographic analysis. The ability of the SOL to adopt the observed secondary structure was recognized as essential for serine activation. Mutation of Gln400, which according to the structural data establishes the main connection between the serine and the SOL, produced only modest kinetic effects. Kinetic data offer new insights into the coupling of the conformational change with active site assembly. Productive positioning of the SOL may be driven by the interaction between Trp396 and the serine α-amino group. Rapid kinetics reveals that His250, a non-SOL residue, is essential for transfer of serine to tRNA. Modeling data established that accommodation of the tRNA within the active site may require movement of the SOL. This would enable His250 to assist in productive positioning of the 3'-end of the tRNA for the aminoacyl transfer. Thus, the rearrangements of the SOL conformationally adjust the active site for both reaction steps.


Assuntos
Serina-tRNA Ligase/química , Serina-tRNA Ligase/metabolismo , Sítios de Ligação , Calorimetria , Domínio Catalítico , Cromatografia por Troca Iônica , Estrutura Secundária de Proteína , Serina-tRNA Ligase/genética , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...