Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 65: 21-28, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31430582

RESUMO

The Centre for the Clinical Application of Particles' Laser-hybrid Accelerator for Radiobiological Applications (LhARA) facility is being studied and requires simulation of novel accelerator components (such as the Gabor lens capture system), detector simulation and simulation of the ion beam interaction with cells. The first stage of LhARA will provide protons up to 15 MeV for in vitro studies. The second stage of LhARA will use a fixed-field accelerator to increase the energy of the particles to allow in vivo studies with protons and in vitro studies with heavier ions. BDSIM, a Geant4 based accelerator simulation tool, has been used to perform particle tracking simulations to verify the beam optics design done by BeamOptics and these show good agreement. Design parameters were defined based on an EPOCH simulation of the laser source and a series of mono-energetic input beams were generated from this by BDSIM. The tracking results show the large angular spread of the input beam (0.2 rad) can be transported with a transmission of almost 100% whilst keeping divergence at the end station very low (<0.1 mrad). The legacy of LhARA will be the demonstration of technologies that could drive a step-change in the provision of proton and light ion therapy (i.e. a laser source coupled to a Gabor lens capture and a fixed-field accelerator), and a system capable of delivering a comprehensive set of experimental data that can be used to enhance the clinical application of proton and light ion therapy.


Assuntos
Modelos Teóricos , Radiobiologia/instrumentação , Aceleradores de Partículas
2.
Rev Sci Instrum ; 81(2): 02A707, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192377

RESUMO

In order to reduce the emittance and increase the transported beam current from the ISIS Penning-type H(-) ion source, improvements to the extraction system are required. This ion source is currently being commissioned on the front end test stand at the Rutherford Appleton Laboratory, which demands higher extraction energies, higher beam currents, and smaller emittances. To facilitate this, the present geometry requires optimization. This paper details the experimental and simulation studies performed of the plasma meniscus and the possible electrode geometry modifications needed to extract the highest quality beam.

3.
Rev Sci Instrum ; 81(2): 02A721, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192390

RESUMO

The aim of the front end test stand (FETS) project is to demonstrate that chopped low energy beams of high quality can be produced. FETS consists of a 60 mA Penning Surface Plasma Ion Source, a three solenoid low energy beam transport, a 3 MeV radio frequency quadrupole, a chopper, and a comprehensive suite of diagnostics. This paper details the design and initial performance of the ion source and the laser profile measurement system. Beam current, profile, and emittance measurements are shown for different operating conditions.

4.
Rev Sci Instrum ; 81(2): 02B718, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192458

RESUMO

A front end is currently under construction consisting of a H(-) Penning ion source (65 keV, 60 mA), low energy beam transport (LEBT), and radio frequency quadrupole (3 MeV output energy) with a medium energy beam transport suitable for high power proton applications. Diagnostics can be divided either in destructive techniques such as beam profile monitor, pepperpot, slit-slit emittance scanner (preferably used during commissioning) or nondestructive, permanently installed devices such as photodetachment-based techniques. Another way to determine beam distributions is a scintillator with charge-coupled device camera. First experiments have been performed to control the beam injection into the LEBT. The influence of beam parameters such as particle energy and space-charge compensation on the two-dimensional distribution and profiles will be presented.

5.
Rev Sci Instrum ; 79(2 Pt 2): 02B717, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315208

RESUMO

The ISIS H(-) Penning surface plasma source has been developed to produce beam currents up to 70 mA and pulse lengths up to 1.5 ms at 50 Hz. This paper details the investigation into beam extraction and beam transport in an attempt to understand the beam emittance and to try to improve the emittance. A scintillator profile measurement technique has been developed to assess the performance of different plasma electrode apertures, extraction electrode geometries, and postextraction acceleration configurations. This work shows that the present extraction, beam transport, and postacceleration system are suboptimal and further work is required to improve it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...